
40 BETTER SOFTWARE APRIL 2005 www.StickyMinds.com

Test automation of Web applications can
be done more effectively by accessing
the plumbing within the user interface.
Here is a detailed walk-through of Watir,
a tool many are using to check the pipes.

by Jonathan Kohl and Paul Rogers

As Web applications become more popular and increasingly
more complex, the need for test automation of these applica-
tions grows. Automating tests through a GUI is difficult and
can be costly. The most popular methods of automating using
a GUI are to use window coordinates to click items or to create
and use references to window objects. The first method relies
on locations of objects not changing on a page; the second
usually relies on a type of proprietary object mapping format
where all Web page objects must be captured and saved prior
to scripting. Another approach is to seek out and use testable
interfaces that are built into Web browser applications and
provide the ability to directly access the objects on the page as
they appear in the Web browser.

In the case of Internet Explorer, there is a published, main-
tained testable interface in the form of the Component Object
Model (COM) interface. This interface provides almost full
control of the Internet Explorer Web browser and allows access
to the objects in Web pages presented in the Web browser. Most
scripting languages have extensions that allow them to “talk
to” Internet Explorer. If this sounds like a lot of work, don’t
worry. Other people have developed toolkits for you.

The Web Application Testing in Ruby (Watir) project is one
such toolkit. Watir is built on the object-oriented scripting lan-
guage Ruby. Its developers have used it for large-scale system
testing, functional testing, and for automating user acceptance
tests. Watir uses a real programming language, is a free open
source product, and allows direct control over objects such as
HTML and JavaScript in a Web page. There are no layers be-
tween the HTML and your test scripts—you can create your own
if you want—and no license fees. At the time of writing, the Watir
tool only supports Internet Explorer, but there is work underway
to support other browsers.

Enough Background. I Want To Test!
Let’s start with an example. You’ll need to have Ruby and

the Watir toolkit installed on your machine. (See the Sticky
Notes for instructions. We used Watir version 1.0.3 for this article.)
You don’t need to know how to program in Ruby to start learning,
but it is a good idea to have a basic understanding of HTML.

Ruby provides a command interpreter called the Interactive
Ruby Shell. We will use this tool to test-drive our examples. To
begin, open a Windows command prompt, type: irb, and hit
Enter. This will start up the Interactive Ruby Shell. You will see
a command prompt something like this:

irb(main):001:0>

This is the prompt for the IRB program. We’ll abbreviate the
prompt to irb> in this article. We can type Ruby scripting code
here, and the interpreter does its job and prints out a value for us.

To add the numbers 2 and 2, we enter this in IRB and hit Enter.
Note that what the user types is in bold type:

irb> 2 + 2

=> 4

IRB evaluated the expression and printed the result.
In Ruby, everything is an object. This is important because

to automate Web applications with Watir, all we have to do is
identify objects and send them messages.

Here’s an example using a string object:

irb> "watir".reverse

=> "ritaw"

Ruby syntax uses a “dot” to separate objects and messages.
In this example, we created a string object “watir”, and we sent
it a message “reverse”. The Ruby interpreter evaluated this for
us and printed the result, “ritaw”. Watir also uses this notation
to interact with objects on a Web page. (See the StickyNotes for
more on objects and messages).

A Google Web Search
If we open our Internet Explorer Web browser and navigate

to the Google home page, we can start designing a simple test.
We manually use Google to search for documents on the Web,
and our example test case will follow what we do as users. In
this test, we will search for a Ruby development book known as
the “pickaxe.” Run through this test case manually first:

Steps:
1. Go to the Google home page in the Internet Explorer

browser.
2. Enter “pickaxe” in the search text field.
3. Click the Google Search button.

Expected Result:
A Google page with search results and a link to the book

Programming Ruby, 2nd Ed. should be shown.
Now that we understand what we want to automate, we can

start using Watir. To start exploring our test case, we need to
tell IRB to use the Watir library:

irb> require 'watir'

=> true

IRB returns “true” to tell us that it has successfully loaded
the Watir library into memory.

Now let’s start up Internet Explorer using Watir:

irb> ie = IE.new

=> #<IE:0x2df6358 @form=nil, @defaultSleepTime=0.1,

@ presetFrame="",

@ie=#<WIN32OLE: 0x2df6310>

@activeObjectHighLightColor="yellow", @frame="",

@logger=nil, @typingspeed=0.08>

www.StickyMinds.com APRIL 2005 BETTER SOFTWARE 41

By sending the “new” message to the IE object, we create a
new instance of Internet Explorer, which we now can refer to in
our IRB session as ie. A new instance means that a new Internet
Explorer browser opens and is ready to accept commands. If we
send messages to ie, Watir sends the corresponding commands
to Internet Explorer. What IRB returned to us in the ie assign-
ment above isn’t important right now; it simply tells us the
attributes of our new object.

Step 1
To satisfy our first step, we must direct our Web browser

instance to the Google home page:

irb> ie.goto("http://www.google.com")

=>1

This sends the “goto” message to the ie object with the URL
as a parameter. The Web browser should now be on the Google
home page.

Exploring Objects

To search on Google, we need to enter a search term in the
text field and then click the Google Search button. Let’s repeat
our manual search for the Programming Ruby book, this time
using IRB. To do this, we’ll need to enter text in a text field and
push a button.

To manipulate the objects on the Google page, we need to
learn something about them. One way is to right click and
View Source to see the page source (JavaScript, HTML, etc.).
This can be hard to read, so Watir provides a way to view
these objects.

We can use a Watir method called showAllObjects to
display all the objects on the Web page. We’re only interested
in the objects we need to use for our test, so this is a good
way to find them.

irb> ie.showAllObjects

----------- Objects in page -------------

text name=q id= value= alt= src=

submit name=btnG id= value=Google Search alt= src=

submit name=btnI id= value=I’m Feeling Lucky alt= src=

=> nil

The showAllObjects method returns all the objects on
the Web page. The first column shows what kind of object it is;
the “name”, “id”, “value”, “alt”, and “src” column
prints out the attributes of that object. These attribute values
are defined in the HTML page source. For example, the definition
of the text field looks like the following:

<input maxLength=256 size=55 name=q value="">

You can see where the name attribute comes from and that
showAllObjects doesn’t show all attributes (only the ones
that are likely to be useful in tests).

Notice some of the entries don’t have values. That’s because
the HTML didn’t mention them (or in the case of value, gives it
a value that means “no text”). To save space, we are only showing
the objects that we know we’re interested in: text fields
(“text” in the first column) and buttons (“submit” in the
first column). You will see more rows describing all of the page
objects displayed on your screen.

When there are several objects of the type you’re looking for,
it can be hard to be sure you’ve picked the right one. A Watir
message called “flash” will cause its recipient to be highlighted
in yellow and blink ten times. If we find multiple objects that
look like good candidates, we can flash each one of them and
pick the one we want before writing our test.

There is only one text item, so that’s the one we’ll use. To be
absolutely sure we’ve identified the right object, let’s send a
flash method to it. Watch what happens in your Web browser:

irb> ie.textField(:name, "q").flash

=> 10

The text field on the Google home page flashed ten times. Now
we know we have the correct text object, and we can successfully
send messages to that object using Watir. We can try the same
thing with a button object that looks like a likely candidate:

irb> ie.button(:value, "Google Search").flash

=> 10

The Google Search button should flash yellow ten times. If
we look at the page source, the HTML tag looks like this:

<input type=submit value="Google Search" name="btnG">

We could use either the value attribute or the name attribute.
For readability, we’ll use the value attribute in this test case. For
non-English versions of Google, using the name attribute would
be a better option because the value will be different.

Now we are ready to proceed. Both of the objects we need
for the second and third steps in our test case are available to us
using Watir. The flash method has worked on the attributes we
have used to uniquely identify the objects we need. If we had
tried to access an object with the wrong attribute, we would get
an error. For example, if we mistyped an attribute:

ie.button(:value, "Gogle Search").click

we would see an error like this:

UnknownObjectException: Unable to locate object, using

value and Gogle Search

42 BETTER SOFTWARE APRIL 2005 www.StickyMinds.com

Step 2
To satisfy the second step, we can enter our search parameter

into the text field we identified using the Watir “set” method:

irb> ie.textField(:name, "q").set("pickaxe")

=> "pickaxe"

The text field will now contain the word “pickaxe”. We
identified the text field on the Google home page by using the
name attribute in the HTML for the text field. Google calls this
field “q”, so we tell Watir to find the text field with a name
attribute “q” and to set the text field to the value “pickaxe”.

Step 3
To satisfy the third step, we need to click the Search button:

irb> ie.button(:value, "Google Search").click

=> nil

A Google Search page should now be returned with
“Programming Ruby, 2nd Ed.” high up on the results list. This
is the link to the site with the second edition of the excellent
book Programming Ruby.

We have successfully controlled Internet Explorer using
Watir to drive a Web application. Now that we’ve seen it in action,
how does it work?

Watir and Objects and Messages
Let’s review carefully how the commands to Internet Explorer

work, using this one as an example:

ie.button(:value, "Google Search").click

Read the command from left to right. ie is an object that accepts
messages. The button message picks one of the buttons on a page.
(If you’re having trouble with the jargon like “object” and “message”,
see the Sticky Notes.) The arguments to button narrow the choices
to a particular button: in this case, it’s the one whose HTML tag
had ‘value = “Google Search” in it. That button is an object that
accepts messages. In particular, it accepts the click message,
which tells Internet Explorer to click that button.

Every object with which we can interact on a Web page is
accessed this way with Watir. For full instructions on how to interact
with objects in Web applications, see the Watir User Guide.

Verifying Results
So far we’ve learned how Watir interacts with a Web page,

and we’ve tried a simple test case example. Just interacting with
a Web application from one page to the next doesn’t make
much of a test case though. We need to verify that Google
found the page we want. And, since this is supposed to be an
automated test, we want to do that without typing into IRB.
IRB is good for exploring and getting the test written, but we

don’t necessarily want to do it more than once.
One simple way to create test cases is

to use test::unit, a testing framework that
is packaged with Ruby. Test::unit allows
us to use assertions to verify that the actual
results match our expected results. In this
case, we assert that the result page should
contain the text “Programming Ruby, 2nd
Ed.”. If it does, the test will pass. If not,
test::unit will flag the failure.

Figure 1 is what the complete test case
might look like in a development environ-
ment. The assertion is the highlighted line.

Most of what we see in this test case
should look exactly the same as what we
did previously using IRB. To make the ex-
ample into a Watir test script, in our Ruby
file, we again declare the Watir library at
the beginning with the require ‘watir’
statement. To also use test::unit, we employ
a require ‘test/unit’ statement. Test::unit
requires us to use the format in Figure 1.
Each def is a new test case, beginning
with the word test.

The test case uses the same statements
that we used in IRB, and we use a Watir method pageContains-
Text to find out whether the Google Search page contained the
text “Programming Ruby, 2nd Ed.”. We wrap this Watir method
in an assertion:

assert(ie.pageContainsText("Programming Ruby, 2nd Ed."))

Figure 1: A complete test case in a development environment

44 BETTER SOFTWARE APRIL 2005 www.StickyMinds.com

www.StickyMinds.com APRIL 2005 BETTER SOFTWARE 45

This means that we check to see if the Google Search page
contains the text. If it doesn’t, pageContainsText returns
false. In that case, the assert statement fails the test. To see what
that looks like, go to the “watir_bonus” folder from your Watir
installation. The “examples” directory will contain the file:
“articleExample.rb”. Open a command prompt and change to
the directory to which you downloaded the test case and run the
test this way :

> ruby articleExample.rb

To inspect the test script, you can open it up in your favorite
text editor. Ruby comes with the SciTE editor which can be
launched by right-clicking the file in Windows Explorer and
selecting Edit from the popup menu. Feel free to change what
the test searches for and repeat it.

Troubleshooting Using Watir and IRB
So far we’ve seen that IRB is useful for helping develop test

cases, but there are other uses as well. A related use is as a trou-
bleshooting tool. To demonstrate, let’s look at an example.
Someone from the customer support team has come to talk to
you about the Web application on which you work. He says
that there have been numerous customer complaints about the
application becoming a blank Web page when they are using
it. The customer support representative tells you that he has
narrowed down the cause to people using the Back button
several times in the application. He knows where it is happen-
ing, but he can’t repeat it. Can you help?

You ask the support representative to pair with you, and
you start to work on repeating the case. You soon realize that
something as simple as clicking a button, pressing the Back
button, and repeating the sequence twice more is difficult to do
reliably. Why not have the computer do it? You open up IRB
and, at your partner’s suggestion, simulate three action and
Back button clicks.

Continuing with our Google example, we can alter our test
case to be repeated the way a user might do multiple searches
using the Back button. This won’t cause a failure with Google
but works well for an example of how to repeat actions using
Ruby and Watir. We can use a loop in Ruby and set the number
of times to repeat a search and hit the Back button. We’ll start
looping the actions three times and watch what happens when
the action is played back on our Web browser. If we were to use
Google, this is what the test would look like in IRB:

irb> ie.goto("http://www.google.com")

=> 0

irb> 3.times do

irb* ie.textField(:name, "q").set("pickaxe")

irb> ie.button(:value, "Google Search").click

irb> ie.back

irb> end

=> 3

To close IRB, type “exit” command at the prompt.
Of course, this example doesn’t cause a failure with Google.

It handles the scenario perfectly. However, there is a problem
with the test application. With the first attempt, doing the
action and clicking Back together three times does not
reproduce the error. So you increase the loop count from three
to four. Still no failure. You continue up to seven, and Bang!
you see the blank page. You try it at eight and see the blank
page again. You retry and see the blank page failure consistently
at seven or more iterations. Now that you have a repeatable
case, you can make it into a test case and log the bug. You
insert the entries from IRB into a test case with an assertion.
The developers now have a test case that they can quickly run
to repeat the problem and a failing test case to improve the
application code to get the test case to pass.

Summing Up
So far we’ve explored a powerful Web testing tool that uses

testable interfaces provided with Web browsers to allow for
automated testing. We’ve seen that we can use the Ruby
command interpreter and Watir together as an aid for test case
development and as a troubleshooting tool. We’ve learned a
little about Ruby along the way and see the potential to harness
a programming language to assist in testing.

As a Watir user, you have access to an active open source
community that can lend expertise. If you have questions or
need a feature, all you have to do is ask, and the community
will help. Because the program is free, you have full access to the
source code and can see how it works or make modifications as
you see fit. You can even contribute code to the project and
share your expertise with the testing community. Welcome to the
Watir world. Happy testing. {end}

Jonathan Kohl (jonathan@kohl.ca) is a software testing consultant
with Kohl Concepts Inc. Based in Calgary, Alberta, Canada,
Jonathan is a contributor to the Watir project. Check out other
writings at kohl.ca and in the January 2004 and March 2005
issues of Better Software.

Paul Rogers, a senior quality assurance analyst also based in
Calgary, Alberta, Canada, has worked in test automation
with a variety of languages and tools. Paul is a lead developer
of the Watir project. Contact Paul at paul.rogers@shaw.ca.

Sticky
Notes
For more on the following topics, go to
www.StickyMinds.com/bettersoftware

■ How to install Ruby and the Watir toolkit
■ More on objects and messages

