
WHEN I WAS A NEW RECRUIT AT A SOFT-

ware company, I stumbled across an ap-
plication crash. I tried to repeat it by
replicating the steps I had taken to get
there, but I couldn’t. I had saved a screen
shot and the error log, so I asked some of
the other testers about the bug. They told
me it was an “unrepeatable bug,” and
that each one of them had found it at
some point. While I spent a couple of
hours that afternoon working on it, in
the end I told the testing team that I
couldn’t repeat it either. The team repeat-
ed the mantra that we often use in these
situations: “If we don’t have a repeatable
case, we can’t fix it.” Without a repeat-
able case, I was just a voice in the dark.

When it became clear that this spo-
radic, unrepeatable bug was negatively
impacting customers, the team decided
that we should spend time looking into
it. The next time I found it, I paired with
a programmer and watched how he at-
tacked the problem. The first thing I no-
ticed was that he wasn’t interested in the
details of what I had been doing when
the bug appeared. Instead, he looked at
the big picture, envisioning the entire sys-
tem in his mind, along with the intricate
interactions within the system. I asked
him to explain what he was thinking, to
show me the clues he saw in stack traces,
and what he had done in the program
code to help trap the error the next time
it occurred.

Eventually, we were able to repeat the
bug regularly at a layer behind the GUI.
However, because we couldn’t always re-
peat it at the GUI layer, it took some time
to convince the team that we had tracked
down the cause. The developer and I
spent time building our case. We fol-
lowed hunches and tried out different
theories. When we felt our case was sol-
id, we presented our findings. We got a
green light to fix the bug and, later, were
satisfied to learn that we had eradicated

a sporadic bug, which our customers
would no longer have to deal with.

So-called “unrepeatable bugs” have
always bothered me, especially sporadic,
high-impact bugs, such as application
crashes, data corruption, and memory
leaks. Often, what seems like a sporadic
problem in the test lab may be a constant
problem for a customer.

When I was starting out as a tester, I
worked on unrepeatable bugs during lulls
between release cycles. Through a combi-
nation of luck and stubbornness, I learned
that I could often find repeatable cases for
these bugs. Since then, I have honed my
testing skills by finding repeatable cases
for high-impact unrepeatable bugs. Here’s
what I’ve learned along the way.

Getting a Repeatable Case
There isn’t a set formula to repeating an
unrepeatable case. It takes a combination
of activities to narrow down the cause.
When you find a high-impact unrepeat-
able bug, continue to gather evidence as
you perform other testing tasks.

Whenever you see the bug, save all
the information you can. Create a special
folder and save stack traces, screen shots,
notes, and anything else that seems rele-
vant to the case. Revisit the folder and re-
view the data, so that when you work
with developers on these kinds of bugs,
you have information to help them trou-
bleshoot. They often will recognize pat-
terns or clues that you missed. In your
spare time, check the bug database for
similar bugs. I have noticed that several
seemingly unrelated unrepeatable bugs
have identical stack traces in the bug re-
ports. Investigation revealed that they
were all related to the same problem.

Instead of focusing on details, start by
finding patterns. It is often more impor-
tant to look at the big picture than to
look at the steps you took to get there.
Watch for patterns among the different
sightings of the bug. When talking to
others, ask questions and watch for pat-
terns in their answers. If you get a hunch
about a particular pattern, ask if anyone
noticed that pattern. They may have in- R

IN
U

S
 B

O
R

G
S

T
E

E
D

E
/R

E
D

U
X

 P
L

U
S

14 BETTER SOFTWARE MARCH 2005 www.stickyminds.com

From the Front Line

Repeating the
Unrepeatable Bug
by Jonathan Kohl

Jonathan Kohl says there is no such thing as an unrepeatable bug.



16 BETTER SOFTWARE MARCH 2005 www.stickyminds.com

From the Front Line

sight that didn’t seem important when
they logged the bug.

In one instance, an atypically long de-
lay between my actions was the first pat-
tern that emerged. As I was talking with
another tester, the idea came to me. I
asked him if, when he saw the bug, time
had elapsed from one action to another.
He wasn’t sure, but I had a hunch to go
on. I followed the hunch and tested with a
stopwatch. I discovered that waiting more
than a certain period of time between two
actions would always repeat the bug.
Now that we had an initial pattern with
which to work, the developers were able
to repeat the bug and find the source.

Remember that the GUI may not be
the best place to repeat all bugs. Many un-
repeatable bugs are caused by conditions
deep in the program code or in the third-
party software that the application uses.
Usually, a problem condition in the code is
tripped in the back end, and as you exer-
cise the application through the GUI, it is
hanging around, waiting to go off. In
many cases, the bugs can consistently be

reproduced when using a testable interface
behind the GUI. For example, with a Web
application, data that is changed in the
GUI isn’t always updated in the database.
You may not be able to tell that anything
is wrong until much later when something
else in the application manipulates the in-
correctly unchanged data, causing a spo-
radic crash at the user interface layer.
However, if you test behind the GUI, it’s
easier to tell what is happening to the data.

Use automated testing tools to help
track down unrepeatable bugs. Automat-
ed tests can quickly simulate conditions
that are difficult for a single tester to re-
peat. Sporadic errors can be repeated
more often when running certain tests
quickly with a tool, and test scripts can
be developed when a scenario seems to
cause the bug more frequently.

Trust Your Instinct
Follow hunches, think outside the box,
and try testing techniques or possible fixes
even if they seem unorthodox. As Web
server tuning analyst Justin Domshy says,

“I’ve learned to be willing to try anything
for a potential fix. Sometimes the
strangest sounding solutions turn out to
be the right ones.” Both of us have seen
Web applications fail due to third-party
database drivers and application server
failures. In one case, removing an unrelat-
ed software program from an application
server caused the Web application errors
to stop. Reinstalling it revealed that a
database driver was the culprit.

If you find a repeatable case for a spo-
radic bug, don’t be surprised if no one
believes you at first. These kinds of bugs
don’t fit a typical development cycle, so
people may react to them in unexpected
ways. Be diplomatic and continue to
gather evidence. Collaborating with oth-
ers is important, partly because those
who help you reach conclusions about
bugs will champion the repeatable case.
Developers can help point out why the
patterns emerge the way they do and can
help identify other testable interfaces to
repeat the bug.

Develop a catalog of failures and their
causes as you go. You can draw on this
experience when you see similar prob-
lems. Learn the weak spots of program-
ming languages used. For example, I have
spent a lot of time tracking down pointer
errors in applications developed in lan-
guages such as C and C++. Be sure to find
out what third-party software is being
used in the system. Find out what servers,
drivers, APIs, and other tools are relied
on by the application. Many times third-
party tools are the cause of unrepeatable
bugs. To identify potential weak spots, it’s
a good idea to create a model of the sys-
tem of the application you are testing.

Be humble, courteous, and respectful
of others’ decisions. The cost of fixing
many low-impact unrepeatable bugs may
outweigh the benefits. However, if you
believe that a high-impact bug is being set
aside because it doesn’t have a repeatable
case, don’t be discouraged. Remember,
there is no such thing as an unrepeatable
bug. Stick to your guns and try thinking
about the bug in a different way. {end}

Jonathan Kohl (jonathan@kohl.ca) is a
software testing consultant with Kohl
Concepts Inc. in Calgary, Alberta, Cana-
da. Check out his other writings at www.
kohl.ca.


