
28	 BETTER SOFTWARE	 MAY/JUNE 2011	 www.StickyMinds.com

IS
TO

CK
PH

O
TO

	 www.StickyMinds.com	 MAY/JUNE 2011	 BETTER SOFTWARE 	 29

J
ust because we are using an exploratory tes ting approach on
our projects doesn’t mean that we don’t document our work.
With exploratory testing, you can document as much or
as little as required by your stakeholders.

Determining documentation requirements on software
projects isn’t difficult; it just takes a bit of investigation. For ex-
ample, while working on a project in a regulated environment,
I talked to the people in charge of regulatory issues for the
company and asked them what documentation they needed.
They said they needed a risk assessment, a test plan, test cases,
and test results. I had everything but test cases, so I pressed
further. They wanted test cases simply because that’s what they
were used to. The regulatory requirements didn’t ask specifi-
cally for test case documents; there just needed to be enough
documentation so that tests could be repeated by others.

Planning and Strategy

What does a test plan look like in exploratory testing?
Often, test plans that direct exploratory testing look very

similar to their scripted testing counterparts. On any project I
am leading, I go through analysis and planning to determine
how to optimize the use of our people, tools, equipment, bud-
gets, etc. A risk assessment (required by auditors) can help
focus our testing.

To create a risk assessment, I do some research. I talk to
marketing, sales, and product management and ask them
about core functions of the product. What is the purpose
of the software? What kinds of tasks would users expect to
perform with the software? What would product success or
failure look like?

Next, I talk to the technical team. What features are new?
Are there any technology changes that are required, such as
new tools, libraries, or hardware? Have they discovered any
challenging areas in their work? How do they define success
and failure?

I then talk to product management about quality criteria.
What characteristics are they expecting from the software?
What about technical areas, such as security, accessibility, and
performance?

The risk assessment can be a list of items describing how
we would mitigate those risks through testing, a focused
testing approach for a specific risk, or a recommended tech-
nique, such as performance or security testing. Figure 1 shows
an example of a risk assessment.

 After developing the risk assessment, I look at a test
strategy. What is the purpose of our testing? Sometimes,
project stakeholders have a clear objective for testing; other
times, it isn’t as clear. I provide options to stakeholders. “Do
you want us to find important bugs as quickly as possible, or

Figure 1: Sample risk assessment

30	 BETTER SOFTWARE	 MAY/JUNE 2011	 www.StickyMinds.com

learning that are proven in training and documentation dis-
ciplines. For example, in the regulated-environment project
discussed earlier, instead of relying on test cases, we created a
“guidance” folder on a shared network drive. I found existing
sources of documentation from the marketing team (sales
brochures, demo presentation materials), the documentation
team (in-progress user manuals), and the operations team (in-
stallation and administration guides). That gave us a start but
didn’t provide enough information for testing. Using docu-
mentation department templates, we started writing “how
to” documentation with a testing focus. We used screen-re-
cording software to record demo videos since they were easier
to maintain than written documentation. If specific setup was
needed, we created “calibration” documents that provided
step-by-step instructions. To help with test idea generation,
we created testing cheat sheets with different testing ideas.

To help focus testing in specific areas, guidance can be pro-
vided in the form of checklists. Each coverage model can gen-
erate checklists with corresponding guidance information in
written and video form.

Checklists essentially are lists of test ideas. The lists are
specific enough to provide focus but vague enough to allow
for personal interpretation and freedom to explore. Figure 2
shows a sample checklist.

 This is how a tester would use documentation to help

are you more concerned that our testing mitigates the risks
outlined in the risk assessment?” Once I have determined a
purpose for our testing work, I can look at who is available
and start to outline what tools, practices, and tactics we will
use when testing.

Next, I look at project resources. Which people are avail-
able and when? What tools, machines, software, and other re-
sources do I need to complete this project? Once I have clear
answers to these questions, I start to glue together my project
analysis, risk assessment, strategy thoughts, and logistics. I
learned this from James Bach [1]. If this needs to be formal-
ized in a document, this becomes the basis for my test plan.

Traditional testers love test plans, but many exploratory
testers hate them. I have a secret: I need to do all of that work,
anyway, so if I document bits of it as I go, taking that existing
information and plopping it in a test plan document is simple
and fast. If I need to change the test plan into a different
format or adapt because the project changes mid-course, it’s
easy and quick.

Guidance Documents

How do new people learn without test cases?
Test cases aren’t necessarily the best way to learn how to

test new software. Alternatively, I use tools and techniques for

Figure 2: Sample test checklist excerpt

guide his exploratory testing: He would look up a specific test
checklist related to the area of the program he was testing.
If he was unfamiliar with that application or feature set, he
would read a how-to guide document to learn how to use
the software and watch videos that demonstrate how to use
and test the software. Next, he would start testing the items
listed in the checklist, referring to the guidance information as
needed. When he needed more test ideas, he’d review testing
cheat sheets to help trigger more creative ideas.

Documenting Test Execution

How can we demonstrate what was tested?
Session-based test management is a high-accountability

approach to exploratory testing invented by James and Jon
Bach. This is a descriptive approach to testing, where you
document what you are testing as you go. The traditional test
case model is prescriptive—you document in advance what
you would like tested. Both approaches generate documen-
tation that can be reviewed and audited. I use lightweight
implementations of session-based test management. Session
ideas focus on specific testing tasks. Testing sessions are un-
interrupted periods of testing time lasting from sixty to 120
minutes. After an exploratory session, testers review their ses-
sion findings with colleagues. This helps generate follow-on

test ideas and is great for knowledge transfer. If there are reg-
ulatory or auditing requirements, a session sheet can be used
as a project artifact.

If traceability is needed, session sheets can map to cov-
erage outlines and to guidance documents and media. For
example, an auditor could ask about a specific bug that was
logged and be referred to the session where the bug was dis-
covered. From the session sheet, the auditor could review the
coverage outline checklist and the guidance documentation.
Watching a short video of the bug report and contrasting it
with the how-to testing document and video, he could repeat
the test himself and verify that the bug had been fixed. See
figure 3 for an example.

While the auditors on our example project were at first a
bit concerned with a lack of test cases, they loved the use of
media and the “how-to” document approach. They found it
easier not only to get a sense of what was tested but also to
repeat tests themselves. The video was incredibly useful for
them, and they liked that session sheets described what ac-
tually happened instead of test cases that describe what we
expected to happen.

Documenting testing using video has become more pop-
ular. It’s an inexpensive and powerful way to show people
what you mean rather than trying to describe concepts in a
document. Recording technology is cheap and readily avail-

	 www.StickyMinds.com	 MAY/JUNE 2011	 BETTER SOFTWARE 	 31

Figure 3: A test video screen capture

32	 BETTER SOFTWARE	 MAY/JUNE 2011	 www.StickyMinds.com

Learn more about SmarteSoft’s
Test Solutions and the real cost
of software defects
www.smartesoft.com/testsolutions.php
+1.512.782.9409

Total Test Solutions, Unparalled Value

Software Quality
Assurance Challenge:
• deliver the best quality
software product

• on time
• on budget

The Solution to
Test Challenges:
• manage the test
lifecycle process

• implement the best
test methods

• reduce timelines,
improve schedule
predictability

• execute effectively
• reduce cost of test

SmarteSoft’s tools and
services support you at every
step of the process with com-
prehensive automated testing
solutions based on proven
best practice methodologies
– dramatically increasing
test success.

SmarteSoft Total
Test Solutions for:
• Functional Test
• Performance Test
• Regression Test
• QA Management

Whether you have never tested software
before or have tested your product manually
– or with a mix of manual and automated
methods – SmarteSoft’s easy-to-use tools
and services will provide the boost you need
to achieve dramatic success.

able. There are also free software options on a variety of
platforms. One of my colleagues recorded, produced, and
distributed a testing training video of me demonstrating test
techniques—all on his smart phone.

Documenting Results

How do we track results and report on test coverage?
On a project that uses free-form exploratory testing

without documentation, it can be difficult to explain what
was tested. There are lightweight tools that can be used on ex-
ploratory testing projects to demonstrate results and progress.

I like to have visible results that show quality and test
coverage in simple terms. From there, more detail can be re-
quested and easily supplied without providing much burden
on the team. James Bach has a “low-tech” testing dashboard
template that can easily be transcribed on a whiteboard. Any
team member walking past the whiteboard can get a sense
of current quality and testing coverage on the project. From
there, checklists can show more detail and session sheets can
show actual testing results. This process can easily fit with
project management, fault tracking, and other team produc-
tivity systems.

I prefer a “pay-as-you-go” approach to documentation.
I don’t do a lot of speculative, up-front documentation if I
don’t have to. I want to avoid having to change it frequently
as the project adapts and changes. I do a bit of documenta-

tion at a time and build toward final products as the project
itself evolves. If you are using an agile or iterative lifecycle,
you may not need to document all the time, particularly if
you start testing at the beginning. If you are in a regulated
environment, auditors are used to a “testing phase,” so you
may be able to use an iteration near the end of the project to
create required documentation.

Conclusion
You can use as much or as little testing documentation as

you need on an exploratory testing project. However, make
sure that what you do is compatible with the lightweight,
test-execution focus of exploratory testing. Do not impose
documentation overhead that dominates testing activities—
those should focus on testing first. In many cases, you can
use something lightweight to solve a problem that seems to
require a heavyweight approach. With a little creativity, you
can fit your documentation requirements within an explor-
atory testing approach. {end}

jonathan@kohl.ca

For more on the following topics, go to
www.StickyMinds.com/bettersoftware.
n	 References
n	 Further reading

