
March/April 2010	 $9.95	 www.StickyMinds.com

The Print Companion to

MINIMIZE HANDOFFS
3 tips for agile teams

GET IT TOGETHER
The power of
collaboration

IS
TO

CK
PH

O
TO

26	 BETTER SOFTWARE	 MARCH/APRIL 2010	 www.StickyMinds.com

www.StickyMinds.com	 MARCH/APRIL 2010	 BETTER SOFTWARE 27

E
arly in my testing career, I discovered exploratory testing (simultaneous test
design, execution, and learning [1]) and tried to practice what experts recommended
in their articles. I thought I was applying their ideas as best I could, and I knew what
I was doing would be called “exploratory testing,” but I was concerned. I wondered
if I was missing something. I had this gnawing fear that I had misinterpreted or mis-
understood a key concept. In short, I lacked confidence in my exploratory testing 	
approach.

You can imagine my surprise when I met exploratory testing trainers who were more
interested in my ideas and experiences than in my ability to recite theirs. Now that I mentor
and train exploratory testers, I find that I, too, am more interested in other testers’ unique
practices, ideas, and experiences than my own. That’s what’s wonderful about thinking
about testing from an exploratory perspective: It is human centered. Instead of dehuman-
izing the tester by reducing testing to a clerical task or by trying to automate away testers,
we embrace their unique skills and experiences and the value they add to our projects. We
use both software and thinking tools to give testers more power, not diminish it.

Recently, a test manager approached me after an exploratory testing training course.
“Finally, I have words to describe what my team and I have been doing for years!” she said
and thanked me for not making them feel stupid for being unconventional in their testing
work. “You’re the first consultant I’ve talked to who didn’t tell me I was doing it wrong.”
She wasn’t “doing testing wrong”—in fact, the development team was delighted with the
results of her team’s testing efforts. Trouble was, the consultants who had worked with her
team were uncomfortable with her exploratory testing approach and the testing styles her
team typically used. This is an important lesson: Just because an approach is unconven-
tional doesn’t mean it’s wrong.

Exploratory Testing Styles
Because exploratory testing has less visible structure—for example, it lacks explicit steps

and expected results—the test execution is different depending on who is doing the testing.
There are different styles and variations that often yield similar results. What follows are
some styles I’ve observed.

Intuitive
This is the most common style. Testers who haven’t learned specific exploratory testing

techniques tend to do this naturally. When you ask them what they are doing when they
are testing in the absence of pre-scripted test cases, they may say, “I don’t know why I did
that,” or that they are using their intuition. Intuition is just a fancy way of saying, “I am
doing this because of the insight I have based on my experience and knowledge.” It can
appear to be random or chaotic, but when the tester is pressed for an explanation of what
he did, a structure and purpose emerge.

Learning dominant
This is also very common. Even shops that insist that all their test cases be designed and

recorded prior to formal testing use this exploratory testing style during test design. While
writing test cases, the test designers will try out new software or a new feature that they
need to learn about. As they learn, they invariably find bugs. This is also true of automated
testing. As the automators learn about the system, they often will use an exploratory ap-
proach as they try to get the automation tool to interact correctly with the application.

The concept of touring [2] heuristics to learn about applications is becoming popular.
Touring is a good test idea-generation activity. Testers create models of the software they
are testing or use mnemonics to help them look at the application in different ways. This
learning about the application leads to bug discoveries and test ideas. Some examples in-
clude creating coverage maps and following them or using different kinds of touring in a
heuristic. For example, James Bach talks about touring the application to see if you can
identify all the features. Or, try using the software the way you imagine different users
would. Touring is a powerful tool for test idea-generation and discovery.

28	 BETTER SOFTWARE	 MARCH/APRIL 2010	 www.StickyMinds.com

Systematic
More advanced exploratory testing involves using a par-

ticular system, model, or strategy to guide your testing. This is
done to be more thorough in looking at and testing the system,
and to be more consistent in our exploratory testing work.
When I started working with James Bach, one thing he noticed
was inconsistency in my exploratory testing execution. I might
use one set of test ideas and tools on one application but a
different set on another. He taught me to use abstract models
(see his Heuristic Test Strategy Model for more information)
during test execution to guide my thinking and to help my ex-
ploratory testing be more repeatable and consistent.

Regression
Yes, even exploratory testers have to do regression testing.

The difference between what scripted testers think of as re-
gression testing and the exploratory testers’ version is in the
level of guidance used. Exploratory testers often use light-
weight coverage outlines as guidance rather than test cases.
The guidance of the outlines helps ensure we can easily and
frequently repeat testing in desired areas. Using lightweight
guidance with an exploratory approach to regression testing
can be quite effective. Stakeholders have a good idea of what

is being covered, such as features, functions, user scenarios,
etc., while still allowing the test executors’ natural variation
to discover problems quickly.

Interactive automated/tool supported [3, 4]
Exploratory testers often use automation tools to help

them. For example, if regression testing is becoming a burden,
some aspects of testing may be automated. Task automation
focuses on speeding up activities like data loads or installing
new builds and can extend to test setup for exploratory testing
sessions. [5] These tests are run under the supervision and di-
rect control of the tester who can step in and intervene manu-
ally at any time.

Exploratory testers also use test automation that runs un-
attended, particularly if the tasks are better served by a ma-
chine than a human. The interactive part comes in when ex-
ploratory testers use the tools to help them simulate different
kinds of conditions and then observe the results, change fac-
tors, and rerun the tests.

Enough Words! How about a Picture?
Most people who understand the unscripted, improvisa-

tional sense of exploratory testing but worry whether they are

Figure 1: Exploratory testing mind map

	 www.StickyMinds.com	 MARCH/APRIL 2010	 BETTER SOFTWARE 	 29

are defined at a higher level than test cases, spelling out prod-
ucts, areas to be tested, and lists of testing ideas. A tester may
run one test in a checklist based on that idea, or he may run
more, depending on the task at hand, his schedule, and what
he discovers while testing.

Information Sources
We use all sorts of information when testing. With experi-

ence, we grow our own testing toolbox of ideas and tools,
and we sometimes find it difficult to explain where our com-
piled knowledge comes from. This knowledge comes from
our testing experience, as well as books, Web sites, product
information, subject matter experts, other team members,
and conference, course, or workshop materials. It is prefer-
able to use many rich sources of information to help guide
our testing. As information providers regarding the quality of
the product under test, any information that helps us do our
work is useful. The richer our information sources, the more
informed our testing will be.

Guidance
When we test, we usually have some sort of guide. This can

be as simple as a bug report that we use for a bug fix verifica-
tion, a test idea, or a test goal or charter for a testing session.
Guidance can be more formal in the form of test checklists,
coverage outlines, visual coverage, feature maps, or test cases.
What we use for guidance is informed both by our coverage
models and our information sources. For example, we may
have a coverage outline for functional testing that is informed
by our own knowledge and experience, as well as by sources
of information from our project and from external sources.
This coverage outline will guide our testing.

Guidance also comes in the form of experienced team
members and outsiders who can help you and your team. In
my work with testing teams, I help them develop skills and
strategies so they can accelerate their learning and reduce
their trial and error. Using outside expertise such as a trainer,
article, concept, or coach can help. Also, look for expertise
within your team. More experienced teammates are a wealth
of information and are great to bounce testing ideas off of.

Structured vs. Unstructured
Structured exploratory testing has more guidance and

more visible tools and documentation. For example, session-
based test management [11] is a method for adding rigor to re-
cording exploratory testing so it may be reviewed or audited.
Instead of writing test cases in advance, testers take detailed
notes while testing. These notes are collected, reviewed, and
stored for audit purposes. At the other extreme, we may en-
gage in unstructured exploratory testing, which is sometimes
characterized as “ad hoc” or “jumping around the applica-
tion to find problems.” Exploratory testing can be very un-
structured or very disciplined—and it usually falls somewhere
between the two.

Techniques
Since exploratory testing is an approach to testing, not a

doing it right aren’t necessarily doing anything wrong; they
merely lack confidence. One way to banish a lack of confi-
dence is to develop your testing skills. Describing exploratory
testing can be difficult, but I’ve found the mind map in figure
1 to be helpful. As you look through the mind map, does it
help your thinking about exploratory testing? Can you iden-
tify areas that resonate with you?

I use this mind map to show that, although there may be
little visible evidence, exploratory testing still can be a dis-
ciplined, structured form of testing. It’s just that the tester
keeps track of more of the structure and guidance in his head.
Exploratory testing isn’t just “playing with a product until
it breaks,” and it doesn’t need to be a set of simple “quick
tests.” Often improperly characterized as “superficial bug
hunting” or “quicktests” [6], exploratory testing can, in fact,
take us far beyond that.

Coverage Models
When testing, we have some idea of coverage, or how

much we are going to test a product. Cem Kaner defines cov-
erage as “… the amount of testing done of a certain type.”
[7] We can expand that to the amount we are testing software
using different approaches. We reveal different information if
we test an application in different areas, in different ways, or
with different techniques and tools.

There are many ways of defining coverage [8], which are
called coverage models. A coverage model describes how you
are going to test the software. Because testing from different
perspectives reveals different kinds of information, it’s better
to use different kinds of coverage models than one single
model. [9] For example, we could use a requirements-based
approach and define a certain amount of testing to verify the
software meets requirements. We could also determine cov-
erage using different testing techniques, such as defining cov-
erage according to security, performance, accessibility, etc.
and defining an appropriate amount of testing in each area.
We will usually use one model at a time when testing, but it is
not uncommon to change models on the fly.

Choosing appropriate models can be determined by how
we want to mitigate risk on a project or through other moti-
vations. It depends on what our stakeholders are looking for.
For example, with software startups, stakeholders often are
more concerned with how testing information affects their
ability to sell their product (capitalize on potential rewards)
than in direct risk mitigation.

James Bach’s SFDPOT “San Francisco Depot” mnemonic
[10] (an abstract model for testing) spells out six possible
models of coverage for exploratory testers: the structure of
the application, its function, the data it uses, the platforms it
runs on, the operations its users typically engage in, and the
impact of time on the system.

One lightweight method of keeping track of what was
tested and when is to use coverage outlines. Coverage out-
lines are physical documents that often take the form of
checklists in a spreadsheet or visual diagrams that show user
flows through the system. Their purpose is to direct and guide
testing and to communicate what was tested and why. They

technique [6], any testing technique can be utilized if it helps.
Classic analysis techniques such as boundary value analysis,
equivalence class partitioning, root-cause analysis, classifica-
tion trees, and others can be applied to exploratory testing. If
a technique helps you generate testing ideas that lead to better
testing, use it. An exploratory testing approach can be used
with any kind of testing technique, such as performance, load,
functional, usability, accessibility, security … the list goes on
and on.

Skills
It is difficult to narrow down a short list of skills useful

for software testing. I’ve worked with a lot of different tes-
ters with different skill sets, and the testers tend to draw on
different areas of experience. I see the following skills most
often:

Strategic thinking: Pick an area of focus and adjust testing
to provide information in areas that yield the most useful in-
formation.

Idea generation: Exploratory testers need to be able to
think of different ways to test the software in the moment.
If they see something strange, they adapt their testing. This
takes practice, and to do it well, testers use mnemonics to help
remember different strategies and techniques.

Investigation: Analyze the product and the space in which
it operates, find areas of interest, and explore those areas
using tools, processes, and testing techniques to reveal useful
information.

Communication: It’s important to remember what you
did (if you didn’t record a testing session) and explain your
strategy and what problems you found. If we discover im-
portant information but can’t communicate it in a variety of
ways, that information doesn’t help the team.

I tend to talk a lot about exploratory testing as investiga-
tion (something I picked up from Cem Kaner) and related in-
vestigational skills. Technical skills that we develop on soft-
ware teams—from programming to technical writing—are a
natural fit. Skills related to understanding the business, our
customers, and how they use our software are also very useful.
I’ve seen wonderful testing from former forensic accountants
and stock traders. Both professions attract natural investiga-
tors who are taught to assess systems rapidly and listen to
their “gut feel” or intuition.

Outputs
When we test, we discover information that stakeholders

on the team need to help make decisions about the software.
We provide information to other stakeholders in many ways:

Bug reports: Typically distributed to the technical team,
bug reports need to be well written so programmers can easily
reproduce and fix the bugs.

Notes: Personal notes help us as we make our testing ob-
servations visible and help us create reports that can be shared
with our teammates.

Session sheets: Descriptions of testing activities captured
during session-based exploratory testing can be used in regu-
lated environments and can be used to help review our work

with colleagues to see if we have overlooked anything. With
teams that use both exploratory and scripted testing ap-
proaches, session sheets and personal notes can help in test
case creation.

Status reports: From low-tech testing dashboards [12] to
verbal reports to stakeholders, communicating status helps
the rest of the team understand what we have tested and the
state of the application under test.

Test coverage reports: Stakeholders want to know how
much testing of a certain type we have completed. Histori-
cally, we have counted test cases, but using multiple models of
coverage and explaining what we actually worked on during
testing can provide richer information than bug counts or
pass/fail metrics.

Quality criteria: It’s important to have measures to deter-
mine whether we are making our quality commitments with
our software. For example, HP has used the FURPS+ model
of quality criteria. [13] When using these sorts of models, we
can report the functional applicability of the system under
test and the usability, reliability, performance, and support
measures that we have agreed on as a team.

Blocking issues, problem areas: It’s important to raise
awareness to decision makers when we are unable to com-
plete aspects of our work. It’s also very important to provide
them with a sense of our qualitative impressions of the prod-
ucts we are testing.

Effort and priorities: We can’t test everything, and we are
usually on a time budget, so we need to express what we have
tested and what we think we need to test. We also need to
demonstrate a sense of priority.

Our testing outputs are our only visible work products
that other team members can see. We need to put effort into
determining what others need, be accountable for our work,
and provide stakeholders such as programmers, managers,
and decision makers with the information they require. If the
stakeholders are concerned with our approach, we need to
adjust and provide them with what they need.

Ultimately, exploratory testing is determined by the mind
of the tester who is doing the testing, and, as a result, it is
interpreted in many different ways. Don’t let fear, uncertainty,
and doubt get in the way of your testing. Instead, use explor-
atory testing references to help guide your skill development
and share your experiences with others. Sharing our ideas
about testing, inviting scrutiny, and making our testing ap-
proach defensible are important. If your team appreciates
the testing information you provide, don’t worry that you’re
doing it wrong. If you are practicing your exploratory testing
approach and your testing is adding value to your team’s ef-
forts, you are doing it right. {end}

jonathan@kohl.ca

For more on the following topic go to
www.StickyMinds.com/bettersoftware.
n	 References

30	 BETTER SOFTWARE	 MARCH/APRIL 2010	 www.StickyMinds.com

