
 www.TechWell.com JANUARY/FEBRUARY 2013 BETTER SOFTWARE 7

people find enjoyable or even addicting. Here are some game-
like concepts we can use to analyze testing [1]:

• Context and rules around game play
• Goals and desires
• Strategies and tasks
• Risks and rewards
• Skills and chance events
• Cheating and compliance

The rules and context of testing differ from team to team,
but when we start out, they are basically spelled out in our
roles and our job descriptions (if we have them) and taught

and enforced informally on teams.
Other team members make it clear
what information they like and
don’t like for us to provide them and
the activities they think we should
undertake. Once we have more ex-
perience, education, and training,
we start to take a more active role in
the context and rules around game
play for ourselves and try to match
that with the expectations and styles
of the team.

The goals and desires are related to what we hope to
achieve. For many testers, our goal is to find important bugs.
That’s often what team members ask us to do: find and report
bugs. Our desires are based on a need to provide value to a
team and to be promoted to a job that fits our needs for money
and self worth at various points in our career.

Strategies revolve around how we prioritize or how we pick
different activities and skill applications to make the best use
of our time. Tasks are the day-to-day activities we engage in,
related to our testing work.

Risks are something we understand well from a product
perspective, but what risks do we face as testers? One is that
we spend too much time on low-value activities and miss
important bugs that trip up our customers. Rewards can be
categorized as extrinsic and intrinsic. Extrinsic rewards are
external, often linked to quantitative metrics like coverage
and bug counts. Intrinsic rewards are often more qualitative,
looking at the value the person gets for doing the activity itself.

Skills are interesting to analyze—from those that we de-
velop as testers, such as observation, evaluation, communica-

We’re undergoing an enormous shift in technologies right now.
As much as we innovate, failures inevitably occur. One way we
mitigate against the damage those failures can cause is through
testing. As new technology makes computing more pervasive,
we have more computing power in cars, homes, public build-
ings, and in medical and life-support systems than was imag-
inable not too long ago. As computing devices become more
enmeshed in our everyday lives, there is an even greater op-
portunity for them to cause harm. With new technology comes
new opportunities for great things, but there are inevitable,
unintended consequences. Skilled, systematic testing can help
discover many of these.

But, it feels like skilled testing is
under attack. People who see testing
as a necessary evil want to outsource
it to tools or to other people. This
undermines the craft and threatens
the value of the products we depend
on. Sure, there is a lot of repetition
in testing that might seem boring,
but many of us are perfectly happy
to perform repetitive tasks in other
situations. Why do we dislike it in
testing? Maybe our approaches to
testing need a rethink.

Is software testing like a game? Before you start thinking
about hopscotch or gold stars, hear me out. In our article in
the September/October 2012 issue of Better Software maga-
zine, David McFadzean and I describe a game as any situa-
tion that involves cooperation and conflict. As testers, we col-
laborate with team members to help solve problems, and as we
point out quality-related information, we end up in situations
of conflict. It’s a fascinating balance that many testers are ex-
perts at reaching. Much of what testers do can be thought of in
gaming terms.

Gamification is one approach to provide a structured anal-
ysis. A familiar perspective can blind our observation, while
looking at the same issue from different perspectives can high-
light observations that we might otherwise miss. Analyzing
human group activity by looking at game mechanics is helpful
when we want to challenge our assumptions and learn more
about what we are doing well or potentially missing out on.

Gamification in application design means improving user
engagement by applying the mechanics of game play that

Software Testing Is a Game
It may feel like skilled testing is under attack. Fight back by changing

your perspective.

by Jonathan Kohl | jonathan@kohl.ca

Technically Speaking

“Analyzing human group

activity by looking at

game mechanics is helpful

when we want to challenge

our assumptions.”

http://www.techwell.com
mailto:jonathan@kohl.ca

8 BETTER SOFTWARE JANUARY/FEBRUARY 2013 www.TechWell.com

tion, and technology skills, to investigation, people, and ques-
tioning skills. Chance events are fascinating. In games, they
help level the playing field so that skilled players can’t always
dominate. In testing, we often discover important issues seem-
ingly by accident, but our skills help put us in the right place at
the right time to observe a chance event.

Cheating and compliance are also fascinating. How can you
cheat at testing? As James Bach and I point out in the satirical
“Secrets of Faking a Test Project,” [2] a test-case-management
system is easy to cheat. You just periodically pass or fail tests in
the system to demonstrate progress. Here is a challenge for test
managers: How do we encourage compliance with organiza-
tion goals and discourage cheating?

I’ve introduced within this article a structure that I would
like you to analyze your own testing work with. What areas
above can you fill in with details? What areas are lacking? Are
there areas that people want to avoid? These are often the best
places to start improving.

Games and gaming provide us with extrinsic (numbers,
counting, and scores) and intrinsic (doing something because

it’s enjoyable) rewards. In testing today, we have two polarities:
metrics-heavy, scripted testing and qualitative-focused efforts
like exploratory testing. If we look to game mechanics, then
we can look beyond polarities and focus on effective testing.
Games provide wonderful lessons to help us analyze our work.
If we take it a step further and apply gaming mechanics to soft-
ware testing, then we can help make it more engaging, creative,
productive, and fun. {end}

Technically Speaking

For more on the following topic go to
www.StickyMinds.com/bettersoftware.
n	 References

http://www.techwell.com
http://www.techwell.com
mailto:hshanholtzer@sqe.com
http://www.techwell.com
http://www.StickyMinds.com/bettersoftware

