
Because I am a software tester, my family,friends, and acquaintances frequentlycomplain to me about poor softwarequality. They tell me that the software theyuse is unreliable, difficult, and generallygets in their way as they try to completetheir work. Once in a while, people tellme about software that saves them timeand makes their lives easier. The positivestories give me hope for the future ofsoftware development. The other storiesare not so hopeful. “Why don’t they develop dependable software?” peoplesometimes ask.That’s a difficult question to answer;there are many reasons why softwarefails. One reason might be that someteams value ideals over reality. Convincedthat the process they follow and thetools they use are the keys to their success,teams don’t seek hard evidence fromtheir projects to confirm their decisionsand actions. They measure success bythe degree to which they follow aprocess and forget to measure how thatprocess helps them achieve the resultsthey need.Sometimes teams tell me that aprocess, practice, or tool is unquestionablygood, as if the goal of the team is to implement the tool or practice itself. Inthese cases, there is little motivation totest whether the results they believe theyare achieving match what is actually being achieved on the project.In one instance, a programmer on anExtreme Programming team was astounded that my testing revealed bugsin the software the team was developing.The team had brought me in prior to arelease to do some exploratory testing.As test-driven development (TDD) prac-titioners, they had an impressive arrayof automated unit and acceptance tests.They had gathered metrics to show theirprocess adoption progress and wereconfident in their approach. They hoped Iwould be an insurance policy to confirmthat they were ready to ship their software.We were collectively surprised when my

Adopting a tool or a process is hardwork, and it’s a good idea to measureourselves to see if we are on the righttrack. However, we need to remember tocheck whether there is a difference betweenwhat we believe the results might be andthe actual results we achieve. There’snothing quite like testing our projectideals against the real thing. {end}

Jonathan Kohl is a software testing consultant with Kohl Concepts Inc.,based in Calgary, Alberta, Canada.Jonathan writes about and speaks onsoftware testing. Read more of his workat www.kohl.ca. Contact Jonathan atjonathan@kohl.ca.

testing in a production-like environment revealed show-stopping errors. I began to investigate why this might bethe case.A look at the automatedunit tests revealed that manywere of poor quality. Theywere often very basic and relied too heavily on mock objects that were used to speedup builds. The automated acceptance tests were alsoquite simple, and the customerrepresentative ran manual acceptance tests based on theautomated tests. Furthermore,they had stopped deployingbuilds in a production-like environment, preferring tohave the customer test in the develop-ment environment.My programmer friend and I werediscussing why my tests failed and histeam’s automated tests passed, and wewere getting frustrated with each other.He kept saying that the code had towork. He had the tests to back it up,and their methodology was proven.“Your tests are running against an ideal,while my tests are using the real thing,”I replied. We were at an impasse. Withnothing left to say, I began singing MarvinGaye’s “Ain’t Nothin’ Like the RealThing.” As I sang the title line in thechorus, he looked at me like I was crazy.He then turned around, sat down, andbegan setting up connections to a production-like environment that could beused during development. The song hadsucceeded where my words had failed.Once he and the other programmerssupplemented their automated tests withreal-world scenario tests in a production-like environment, I saw a marked improvement in the software they deliv-ered. They also began using manual testresults to qualitatively measure theirTDD process so they could improve thetests they were creating. 

There’s Nothing Like the Real Thing
by Jonathan Kohl

Expert Opinions at Your Fingertips

PowerPass members can access the
STQE/Better Software magazine archive on

StickyMinds.com to read every 
Technically Speaking ever published!

Get words of wisdom dating back to 1999 
from such notables as Brian Marick, 

Lee Copeland, Mike Cohn, Esther Derby,
Elisabeth Hendrickson, James Whittaker, 

and Brian Lawrence. Visit 
www.stickyminds.com/magarchive.

www.StickyMinds.com MARCH 2007 BETTER SOFTWARE 7

Technically Speaking


