THIS | BELIEVE
How values drive
behavior

2007 SALARY
RVEY RESULTS

POWER OF THE

HUMAN MIND WITH X8
AUTOMATION ToOLs %
| 3

VEER IMAGES

, ’ \\‘\\\\\\\N\V!Hff////,/////////

PowER OF THE
HumMmAaN MIND WITH
AUTOMATION TOOLS

20 BETTER SOFTWARE DECEMBER 2007 www.StickyMinds.com

LIKE TO WALK TO WORK. | ENJOY THE SCENERY, THE

EXERCISE, AND THE TIME TO THINK ABOUT PROBLEMS |I'M

WORKING ON. SOME OF MY BEST IDEAS COME FROM

THESE WALKS—AWAY FROM THE COMPUTER, OUT IN THE

FRESH AIR. MANY OF THESE IDEAS ARE TRIGGERED BY

OBSERVATIONS THAT LEAD ME TO CREATIVE SOLUTIONS.

BuT WALKING CAN BE SLOW, AND | CAN BE THROWN OFF

SCHEDULE IF | STOP TO WATCH WILDLIFE OR TO ENJOY A SUN-

RISE OVER THE MOUNTAINS. S50, WHEN I'M IN A HURRY, | USE

AN ALTERNATE FORM OF TRANSPORTATION. A BUS OR TRAIN TRIP

STILL INVOLVES SOME WALKING, BUT IF | NEED TO GET TO A

MEETING ON TIME, | CAN GET THERE MUCH MORE QUICKLY THAN

IF | WALKED THE ENTIRE WAY. | RARELY DRIVE TO WORK; | END

UP SO ENGROSSED IN THE TASK OF DRIVING THAT | HAVE LITTLE

TIME TO THINK AND OBSERVE MY SURROUNDINGS. HOWEVER, IF

SOMEONE ELSE IS DRIVING, | NOTICE A LOT MORE. FOR EXAM-

PLE, | RECENTLY TOOK THE TRAIN INTO WORK, AND ON THE WAY

IN | SAW A BLUFF IN THE RIVER VALLEY | HAD NEVER BEFORE

NOTICED. |I'VE PASSED THE RIVER VALLEY MANY TIMES, BUT

THAT DAY ON THE TRAIN | WAS ABLE TO OBSERVE THE SCENERY

FROM A COMPLETELY DIFFERENT PERSPECTIVE—WITHOUT THE

DISTRACTIONS | FACE WHEN WALKING OR DRIVING.

www.StickyMinds.com DECEMBER 2007 BETTER SOFTWARE 21

Similarly, when testing, I look for
tools to assist me on the task I need to ac-
complish. If T want to thoroughly
investigate the software I'm testing, I do
more manual testing and analysis. If 1
need to complete tasks quickly or repeat
tasks that require little thought, I use
some form of automation. I call this hy-
brid of manual and automated testing
“interactive automated testing.” Instead

than did our combination of manual and
automated testing.

The combination of manual and auto-
mated testing involves trade-offs.
Unattended automated test suites can be
run frequently, quickly, and when there
are no human testers around. Unfortu-
nately, machines aren’t intelligent, so
they can’t observe and investigate suspi-
cious behavior, vary their testing

focus on a particular area of the screen
more easily or watch for patterns that I
miss when I’'m busy typing or clicking.
The ability to pull myself out of an
immersive testing environment and view
my testing from a different perspective is
a powerful thinking tool. Watching an
automated test run is one way of pulling
yourself out of your manual-testing envi-
ronment. I’ve often seen previously

THE ABILITY TO PULL MYSELF OUT OF AN

IMMERSIVE TESTING ENVIRONMENT AND VIEW

MY TESTING FROM A DIFFERENT PERSPECTIVE

IS A POWERFUL THINKING TOOL.

of viewing test automation as an effort to
replace all manual tests, this style of au-
tomation focuses on extending the
abilities of the tester with an automation
tool. It can also provide a different per-
spective on the software I am testing.

USING AUTOMATION
WITH EXPLORATORY
TESTING

When I started out as a test-automa-
tion specialist, my goal was to automate
as many testing tasks as possible. My
team thought that running tests unat-
tended was ideal, so we wrote scripts to
automate complex, manual test suites.
However, some tasks were difficult to au-
tomate reliably and were more trouble
than they were worth. Many times our
unattended scripts would miss bugs we
hadn’t thought to program for or would
fail at tasks that are simple and routine
for humans but difficult for a computer.
Our test automation ended up with some
degree of human intervention, at least
some of the time. While this felt like a
setback, our automated test harness was
running quite reliably, and when we did
need to step in and help out manually, we
tended to discover important informa-
tion about the software we were testing.
We noticed that our unattended auto-
mated tests discovered far fewer bugs

22 BETTER SOFTWARE DECEMBER 2007

activities, or report results the way a hu-
man can.

Sometimes when performing ex-
ploratory testing, I want to focus on an
area deep within an application. If setting
up the exploratory test requires a signifi-
cant number of steps, I will use a tool to
automate navigation through the graphi-
cal user interface (GUI). Since I am
creating an automated test setup that I
can use for different tests, I might call
this tool a “text fixture” for my ex-
ploratory testing. Once I have the
navigation automated, I run my complet-
ed test fixture, watch it play back on my
monitor, and then take over manually
when I get to the section where I want to
focus my testing.

Automating exploratory test fixtures
or the setup required to run a test can be
an effective tool to enhance manual test-
ing. You get the speed, precision, and
repeatability of an automated test, cou-
pled with the power of a curious human
tester observing and investigating the ap-
plication. Not only does this help testing
become more efficient, but being able to
watch the application work without any
distractions from your program interac-
tion also can provide a different
perspective. When I’'m not physically op-
erating the application by typing or using
a mouse, | see things differently. I can

www.StickyMinds.com

unnoticed behavior in an application
when running a test fixture, stopped it,
taken over manually, and found an im-
portant bug. I find this perspective to be
a good source of testing ideas.

OBSERVATION,
INVESTIGATION, AND
AUTOMATION

Automated test fixtures were a great
kick-start for my exploratory-testing ses-
sions, but I soon learned to incorporate
other forms of automation in conjunc-
tion with manual testing. In one case, a
high-profile, intermittent bug was passed
on to the test team. We were under time
pressure to track it down and help the
programmers fix it. I used an automated
test fixture to navigate for me, and I per-
formed several manual tests in the area of
concern. Realizing it would take a signifi-
cant amount of time to explore my
current test ideas, I modified my test fix-
tures to create my test data and to repeat
a test in a loop. I suspected that the bug
appeared to be intermittent because two
users were simultaneously performing ac-
tions in one area of the application. To
simulate this, I ran one automated script
to create test data, another to repeat
steps in a loop, and then I manually test-
ed on another machine. I managed to
re-create the bug because it required two

simultaneous users accessing a common
administration feature with just the right
kind of test data.

Recently, I was manually testing a
Web application feature that allowed
long text-field inputs. Rather than count
and type in characters by hand to test the
limits of the error-handling code, I used a
tool to generate test data. PerlClip is an
excellent tool for this task. One input
type it helps you generate is “counter

>

strings,” which are self-counting strings
of a user-determined length. If I tell Perl-
Clip to create a test string that is 255
characters in length, it quickly generates
it and adds it to the Windows clipboard.
To use it, all T need to do is paste it into

the application.

potential source for a bug. When I was
the one typing, I hadn’t noticed this be-
cause it was only a slight difference. 1
took note of this behavior to remind my-
self to explore it further when I had
completed my current task.

Once I had completed my testing task,
I decided to investigate the behavior of
the login page. Since the login attempt
page response times varied slightly, 1
knew I needed to repeat a similar test
several times. I also wanted to design this
test from an exploratory testing perspec-
tive, so it needed to be flexible enough
for me to change on the fly and to vary
inputs. I created a new Wati] test case
that would be run by the JUnit unit-test-
ing framework (see the StickyNotes for a

tion in the message that I might miss
while rapidly repeating the test.

The test ran and passed as expected,
so I decided to change the test to use a
longer input string in each field. I had an
input string that was 255 characters
long, so I changed the test, saved it, and
ran it again. I noticed that the time to
process this login attempt was much
longer than the previous attempt. To ex-
plore further, I created a group of similar
tests in my JUnit class. I also added a
“teardown” method that closed Internet
Explorer after each test.

The timing differences were obvious
when 1 used very small strings and very
large strings. I added a new test case that
had a counter string of 5,000 characters,

PerlClip helped speed X
. public
things up for me, but my

tests also involved logging
out, shutting down the
browser, and starting over
after each text input submis-

sion. This was getting a bit

void testInputLength ()
ie.textField (name,
ie.textField (name,

ie.button ("Login") .click() ;

assertTrue (ie.containsText ("Login Failure")) ;

throws Exception {
"user") .set (System.getProperty ("inputLength.10")) ;
"password") .set (System.getProperty ("inputLength.10")) ;

redundant and repetitive; I
was getting distracted, log-
ging in and navigating through the
application to get to the section I was
testing. Sometimes these distractions are
useful because I can explore interesting
behavior outside the current testing fo-
cus, but in this case, I needed to minimize
distraction—I needed speed and precise
navigation. Since I was in a Java environ-
ment, I used the test automation tool
Web Application Testing in Java (Wati])
to help out. Wati] drives Internet Explorer
in much the same way an end-user would,
and it plays back scripts on your monitor.

In minutes, I created a simple Wati]
test that logged in with my test user ac-
count and navigated through the
application to the section I wanted to test,
and then it stopped. At that point, I took
over the Web browser and entered my
PerlClip-generated test data. 1 executed
my tests much more quickly and had the
added benefit of observing the application
without needing to type or use the
mouse.

This new observation perspective paid
off. When my WatiJ test started a new
Web browser instance and attempted to
log in, I noticed the processing time for
login attempts varied slightly on each
script run. This looked suspicious—a

link). I could now control the automated
test and observe the application from a
different vantage point.

Once I had a Wati] test that would en-
ter in a username and password, click the
login button, and verify that a login error
message occurred, I began adding test
data. I stored various kinds of PerlClip-
generated test data in a Java “.properties”
file, starting with counter strings of vari-
ous lengths. I had some short strings and
some very long strings—much longer than
a typical username and password. I added
a setup method to my JUnit test class that
would create a new Internet Explorer
browser instance, navigate to the login
page, and load the test data. Listing 1
shows the test case.

This JUnit test uses the WatiJ library
to run Internet Explorer, enter test data
in the username and password fields, and
click the login button on the login page.
In this case, it uses test data, which is
called “inputLength.10,” meaning the
size of the test input is ten characters in
length. It then does a JUnit assertion—a
check on the result of the test. In this
case, it asserts that an exact match of the
error message “Login Failure” occurs.
The assertion will catch any slight devia-

www.StickyMinds.com

which was a deliberate input penetration
attack. This time, the application failed,
with a Java exception stack trace. Modi-
fying my set of tests, I was able to
ascertain within a couple of minutes that
an input attack of 4,000 characters or
more would cause an overflow error. 1
wasn’t sure why the application was
slowing down, but noticing this fact and
designing tests using my automation
tools helped me quickly find an impor-
tant bug.

A programmer came by while I was
exploring my test results and saw the er-
ror message popping up on my screen.
He pulled up a chair and sat with me.
“Cool. Are you using JUnit?” he asked as
I demonstrated the failure for him. He
asked for the test case so he could run it
on his machine. Once he had fixed the
code so that the JUnit “red bar” (test fail-
ure) had turned to a “green bar” (test
passed), he called me over and demon-
strated it. We improved the test, checked
it into source control, and started a new
build.

Using the computer as an automation
tool, combined with my observation and
investigation skills, we quickly got to the
bottom of a previously unnoticed bug.

DECEMBER 2007 BETTER SOFTWARE 23

Here are some automation ideas to help complement manual testing:

B CREATE TEST FIXTURES TO AUTOMATE TEST SETUP USING A

GUI AUTOMATION TOOL
®* PROGRAM NAVIGATION
® TEST DATA POPULATION
®* WORKFLOW CREATION

B AUTOMATE THE CREATION OF TEST DATA AND POPULATE THE

APPLICATION WITH IT

® | LIKE USING INTERFACES BEHIND THE GUI, sucH ASs WEB
SERVICES OR DATABASE INTERFACES, AS THEY TEND TO BE
LESS SUSCEPTIBLE TO CHANGE AND OFTEN ARE MUCH

FASTER AT PROCESSING
B SIMULATE:

®* AUTOMATE REPETITIVE USE OF COMMONLY USED FEATURES

OR WORKFLOWS

®* CREATE LIGHT USER LOAD FOR USABILITY TESTING OF

CLIENT-SERVER APPLICATIONS

— THIS CAN BE DONE ON MULTIPLE MACHINES USING A GUI
OR ON ONE MACHINE USING MULTIPLE THREADS AND THE

PROTOCOL THE APPLICATION USES

B AUTOMATE BUILD DEPLOYMENTS, APPLICATION INSTALLATION,

AND FILE MANAGEMENT
®E MONITOR:
® VISUALLY WITH DIAGNOSTIC TOOLS

— E.G., THE UNIX “TAIL” COMMAND IS USEFUL TO WATCGH

SERVER LOGS IN REAL-TIME

®* CREATE A LOG FILE OR OTHER ACTIVITY WATCHER THAT

ALERTS YOU IF CERTAIN CONDITIONS OCCUR WHEN TESTING

— BRIAN MARICK’S EVERYDAY SCRIPTING WITH RUBY HAS
AN EXAMPLE “WATCH DOG” SCRIPT. SEE THE

STICKYNDOTES FOR MORE INFORMATION.

24 BETTER SOFTWARE DECEMBER 2007 www.StickyMinds.com

The combination of a good automation
test tool and the investigative mind of a
tester was the recipe needed to find this
bug. Furthermore, since I was using the
same language and tools that the pro-
grammers were using, it was much easier
for us to collaborate.

BLURRING MANUAL
AND AUTOMATED
TESTING

Sometimes, test automation advocates
scoff at manual testing, while manual
testers don’t see how running unattended
automated tests is an accurate reflection
of the work they do. Often, this divide in
thinking prevents utilizing the skills of
both groups. However, automated test-
ing and manual testing need not be
contradictory concepts. Interactive auto-
mated testing bridges this gap and
provides an opportunity to test applica-
tions in different ways.

Different testing tools can help pro-
voke different kinds of test ideas.
Marshall McLuhan said: “We shape our
tools and thereafter our tools shape us.”
(see the StickyNotes for a reference). Be-
fore I used tools to enhance my manual
testing, I didn’t adapt to changing condi-
tions or observations as easily or as
quickly. Sometimes I didn’t even see a
change or an error condition that was be-
ing thrown on the backend because I was
only testing through the GUI and wasn’t
using a tool to monitor more closely.
When I did see a problem that required a
lot of setup and repetition to investigate,
it required more time and thought to cre-
ate and execute tests. Now, I tend to use
tools to monitor servers, query data that
is being used by the application, and help
execute different kinds of tests. My test-
ing has been likened to a cyborg—part
human, part machine.

Here is a recent example. A tester was
running SQL scripts on the database
backend of a Web application. She no-
ticed that some of the data was
duplicated—seemingly intermittently—
and she asked for my help. This was a
good step; she was using an automated
tool for monitoring. She thought that the
bug might occur when running similar
types of tests. The only problem was the
tests required an involved workflow with
a lot of fields for an end-user to fill in on

several screens, so running a test manual-
ly took a lot of time. It was also
susceptible to a lot of variation in inputs,
so the tester had trouble remembering
exactly what she had done. Since I had
Ruby and Web Application Testing in
Ruby (Watir) installed on my machine, I
immediately began thinking about tests I
could design using that tool to help. I be-
gan designing a test, much like an
experiment, where I would repeat a test
case ten times to see how many times the
intermittent bug occurred. I wanted to
minimize variability and have control
over my inputs, and I wanted to repeat a
similar test several times quickly. I creat-
ed a Watir script simulating the user
workflow, with all the user inputs stored
as variables so I could control them more
easily. This took about fifteen minutes to
create. | then ran the test several times
under my supervision, watching the

script play back on the screen. We then
monitored how often the bug occurred
and found the data duplication that was
occurring with this workflow. In short
order, we had the information we needed
for the programmers to begin investigat-

ing a fix. We also had a script we could
reuse during the bug fix process and for
other testing tasks.

The tester was surprised to see me
open up a programming environment at
first, but when I explained what I was do-
ing, she was intrigued. “Can I have the
script? I want to learn how to do that for
similar cases!” In short order, I helped her
install Ruby and Watir and got her off
and running, creating her own scripts. I
was suddenly struck by how much Watir
shapes my Web-application testing. When
the Watir project began about three years
ago, I was a contributor on the project
and had influence on its design, primarily
through features I needed for test au-
tomation. Now, it and other tools are
strongly integrated into my Web-testing
work. I use some tools for user simula-
application
monitoring, and I rely on the feedback of
both to guide my testing. Now that I rely
on the tools, they have become enmeshed
with my manual testing activities. It can
be difficult to divide my testing into either
only manual testing and only automated
testing. I have found that I can observe

tion and others for

BETT

ER
SOFTWARE
(MAGAZINE

and investigate potential problems in real
time during testing much more easily this
way.

Combining the power of the human
mind with automation tools helps fuel
observation and discovery. When you
combine these testing activities, you’ll be
surprised where your testing journey will
take you. {end}

Jonathan Kobl is a software testing con-
sultant with Kobl Concepts Inc., based in
Calgary, Alberta, Canada. Jonathan
writes about and speaks on software test-
ing. Read more of his work at
www.kohl.ca. Contact Jonathan at
jonathan@kobhl.ca.

Sticky
Notes

For more on the following topics go to
www.StickyMinds.com/bettersoftware.

m JUnit testing framework

m References

W FEveryday Scripting with Ruby
m Influences

Web seminars are free informational seminars brought to you by
Better Software magazine and StickyMinds.com and sponsored by
leading industry solution providers. Industry experts and authors
from Seftware Quality Engineering and the sponsoring company
will answer guestions through these interactive sessions.

Advance Your Knowledge, Learn From the Experis
www.sge.com/WebSeminars

K ik e o

www.StickyMinds.com DECEMBER 2007

BETTER SOFTWARE 25

