

Originally published in Automated Software Testing magazine, November 2009

Test Automation Politics 101
by Jonathan Kohl www.kohl.ca

Starting out in test automation is challenging. We usually talk about automation design, using test frameworks, and the

details of automating tests themselves. We rarely talk about the people we work with, and how their ideas about test

automation can be even more challenging. As a rookie test automator, I was surprised by resistance to our test

automation efforts. I often wished there was a kind of handbook that pointed out areas of potential resistance so I would

be surprised less often. In the absence of a handbook, here are some pointers based on my own experience.

Challenging Delusions of

Grandeur

ow we think about the tools we use and choose

colors our impression of software projects. If

we project our imaginations onto the

capabilities of test automation tools, they often don’t live

up. Early in my career, I found myself in a meeting with

a development manager who had decided to purchase a

tool costing tens of thousands of dollars. We on the test

team had little input into the purchase decision, but we

were expected to use the tool to help create “defect free

software”, "speed up release cycles" and get our software

to market at just the right time. We found out that the

combination of a smooth-talking salesman and the

imagination of the development manager had helped her

form an odd perception of what the tool could do for us.

She thought the expensive test automation tool would

run on its own, create its own tests, and report test

results, like some sort of intelligent robot or automaton.

When we showed he what the tool could actually do, and

that even its record/playback engine didn’t work with

our software, she got angry with us.

Initially, we were blamed for using the tool incorrectly,

but a follow-up audit by programmers verified our

claims. So, we were ordered to make the tool work

anyway: “We don’t believe in the impossible in this

shop!” and furthermore, “the tool was expensive!”

Eventually, she had us quietly replace it with something

more suitable.

When decision makers pin their hopes on a particular

tool as a simple solution to difficult problems, sales

people, and sometimes overly-zealous technical people

are more than happy to agree. No matter that the

technology is old, the design is poor, the development

team lacks skill, or that schedules are far too aggressive,

test automation will save us! When you are the bearer of

bad (but realistic) news – that the tool is there to help,

not to rescue –don’t be surprised if the decision maker

feels disappointed. After all, they probably had to sell

this to a purchase manager. They probably feel

vulnerable and afraid of looking foolish. The best way to

deal with this is to be kind, empathetic, but firm. Always

reach for evidence to prove or disprove ideals, and avoid

trying to appeal to their emotions.

Acquiring Tools

Determining a useful tool that meets your needs can be

difficult and fraught with resistance. There are many tool

floggers out there, both proprietary—we buy from a

vendor—and free, open source—we download from a

website for free—types. Neither group is immune to

making wild claims and appealing to the emotions of

decision makers. If you talk to a team member who

favors one type over another, be prepared for resistance

if you are looking at something contrary to their

preference.

Tools rarely come out of the box meeting all of our

unique needs. There is so much variation in software

development tools, technologies and implementations

that it is next to impossible to create a tool that is

suitable for everyone in every situation. One of my

colleagues says any tool will meet about 60% of your

needs. The other 40% can be addressed through custom

development and using other tools. It’s not a bad rule of

thumb, as those who try to convince us their tool is the

one we should use don’t tend to think that way.

H

http://www.kohl.ca/

Originally published in Automated Software Testing magazine, November 2009

Vendor or Open Source Project

Pressure

Interest in open source tools has exploded over the past

few years. These tools often offer effective alternatives to

their expensive, proprietary counterparts. Some open

source tools are a bit weak or difficult to use, and some

proprietary tools can over-simplify test automation.

Most tend to sit somewhere in the middle.

While we all have biases and preferences, the truth is

that there are perfectly useful tools from both

proprietary and open source projects. For example, I

have used, contributed to and support open source tools,

but I also use proprietary tools. However, if you talk to

an open source zealot, they will rant against the evil

corporations that make proprietary tools. Some

proprietary tool vendors love to bash open source tools

as being “unprofessional” or not ready for enterprise

organizations. In reality, there are strengths and

weaknesses with both categories.

These biases and preferences move from outside the

organization to within our own teams. Some teams will

refuse to even consider an open source tool. I’ve heard to

comment, “who will we sue?” if an open source tool is

selected by the team. This seems like an absurd way to

determine a purchase, but it’s not uncommon. Other

teams refuse to consider proprietary tools, even though

many are more usable and have better error handling

and technical support than their open source

counterparts. My approach has become much more

pragmatic: if it works, and we can afford it, use it.

 Don’t underestimate the power of personal relationships

with vendors (“if you help me sell this, I’ll help you”) or

open source projects (“contribute to our project, and get

your company to pay for it!”) This type of relationship

can be a source of resistance towards decisions that

potentially threaten a stake-holder's relationship with

someone else.

On one project, we were puzzled that a purchasing

manager kept rejecting our tool decision, insisting we

buy a different tool. Then, after that tool was purchased

and when it didn’t work in our environment, we found

out that the purchase manager was friends with the tool

salesman.

On another project, we felt that an open source tool was

being forced on us. When we dug deeper, we realized a

senior programmer was friends with one of the tool

founders and wanted to work on the open source project

during working hours work time.

Another consideration is that while purchasing

managers talk about saving money where we can, they

are sometimes under pressure to spend all the money in

their budgets before the end of the fiscal year. While they

may say they want the selected tool to be cost-effective,

they may also see an expensive tool purchase as a source

of pride, and steer the purchase towards that.

One team I worked with was shocked to find their cost-

effective choice denied in favor of purchasing the one of

the most expensive tools on the market. They ended up

having to use a free, open source too to fill in the gaps in

what that expensive tool could do. While decision

makers were pleased with the results, they upset with the

use of cheap tools and wanted the team to “make this

(expensive) tool work as well as their (free) tool.”

Record/Playback vs. Development

Library

Another controversial schism in the test automation

world is the argument over using so-called

“record/playback” testing tools versus using building a

custom test harness around a test library. A lot of

record/playback systems were sold as a way for non-

technical people to take charge of test automation. While

they worked well for some projects, on others they failed

miserably.

For example, one senior manager I know thought it

would take little effort to create a large, effective test

automation framework. The test automation specialist

subsequently discovered that they would have to create

all the test scripts by hand. Difficulties arose. Evidently,

decision makers were taken advantage of by aggressive

sales tactics that promised the world for little effort.

Technical people were stuck with some weird tool that

didn’t do what anyone expected without a lot of

frustrating work.

As a result, many test automation specialists have grown

to loathe record/playback and now discourage using it at

all. The truth is, there are some projects where

record/playback can be used as an effective automation

Originally published in Automated Software Testing magazine, November 2009

strategy. It can work in standard, simpler applications

that don’t change a lot. I’ve personally looked at it for

lightweight regression automation on projects where the

user interface doesn’t change much. We used it to make

sure that basic workflows through the application work

from build-to-build, and we didn’t mind throwing the

scripts away and re-recording when the application

changes later on down the road.

If you suggest record/playback may not work with your

application to a purchasing manager, or suggest that you

might want to use record/playback to an automation

veteran, expect resistance.

Implementation

Challenges

Once you get past the acquisition phase, implementing a

test automation strategy and design can be difficult. It

seems that everyone has an opinion on how test

automation should be done, whether they are influenced

by claims they have read, or by inventions of their own

imaginations. Sometimes you wonder where the ideas

come from. Here are some common sources.

Process Idealism

Back in the 1990s, process salesman and tool vendors

often told test automation specialists: “You should have

100% test automation.” The thinking was that if all tests

were executed by a tool, it would be faster, cheaper, more

reliable, and more effective than having human testers

do it. Many of us tried this out and learned that there are

some types of tests that are better suited to tools and

others that are impossible to be run by anything but an

intelligent, skilled human. One shop I visited bought

several tools in the attempt to reach the goal of 100% test

automation. These tools are now living out their useful

days as door stops for the test lab. By the early 2000s,

test teams were looking at automation more

strategically, and trying to harmonize manual and

automated testing efforts. This is good – utilize the skills

of humans, and use tools to help them do a better job.

Enter the Agile movement, chiefly the Extreme

Programming community. Once again, the “Automate

100% of tests” mantra appeared (much to the chagrin of

testers who had lived through it before and felt we had

progressed). This over-simplified idea that all testing

could and should be automated has gained currency

once more. Once again, we’re seeing what we used to see

ten years ago. Since automated test tools can’t observe,

think, evaluate or change direction, important bugs get

missed if human tester eyes aren’t also involved.

One Scrum/XP team spent an enormous effort to

automate all the tests in their test tracking tool, only to

have obvious and costly bugs creep into a production

system. Instead of then blending manual and automated

testing, the test automators were ordered to make their

automated tests more effective. Over time, the amount of

test automation code developed to support this effort far

eclipsed the lines of code in the software that was being

delivered to customers. The test automation software

became buggy, brittle and suffered from architectural

problems just like, well, any other software development

effort does. Unfortunately, the small test team

responsible for the care, feeding and maintenance of this

massive automation stack couldn’t keep up. Since it

didn’t bring in revenue, it had fewer resources available

to it.

Instead of taking a pragmatic view and evaluating the

effectiveness of the tool in how it helped the team be

more effective, this team decided to put the ideal above

the actual results they were realizing. Things got worse

when they decided to integrate functional tests into their

continuous build system. The team’s wakeup call finally

came when their test environment and test automation

met their continuous integration and “100% automation”

ideals, but were so different from production, that they

missed finding catastrophic errors that minor manual

testing revealed after the fact.

The power of ideals of how things "should be" are

powerful and cause resistance when challenged,

particularly when beliefs about processes are deeply held

and widespread.

Punished for Thinking outside the

Box

Test automation folklore tends to focus on trying to

automate what human testers do (called regression test

automation). Yet, if you look at mission-critical software

and how it is tested, you’ll find they make a use of

simulators and emulators. Since the software has to

Originally published in Automated Software Testing magazine, November 2009

work, their test automation tends to focus on simulating different conditions the

software might encounter, checking that it can handle different conditions properly.

When one of my colleagues advocated using test automation resources to create much-

needed simulators, he encountered a great deal of resistance. The testers expected a

record/playback regression test framework or tool. Meanwhile, the programmers were

dead set on the extensive use of unit testing with mock objects, and some sort of simple

table-based user acceptance testing, such as a tool like FIT.

It took a lot of convincing, patience, diplomacy—and a thick skin—but my colleague

convinced the team to try out a simulator. They did, and were amazed at how effective

it was in helping them create different conditions to test the software against. The

blend of running a simulator and manual testing by testers and subject matter

experts found all kinds of problems early on in development. This led to creating a

better design as the team learned the sources of bugs.

It can be difficult to recommend using automation tools in ways other than

mainstream regression testing tools. However, regression testing is only one possible

area for us to consider using test automation. We can save time by automating tasks

such as deploying builds, monitoring log files or error conditions, or automating the

setup for manual tests. However, if you do buck the mainstream, you will make

stakeholders on your team nervous. Be prepared for resistance, and make sure you

gather data to back up your claims.

This Tool Cost a Lot so Make It Work!

Sometimes, people above us may have staked their reputation or jobs on a decision to

use a particular tool. As a result, we’re stuck using it. This can cause strange

challenges, particularly because most tools are tailored or suited to particular

development lifecycles or processes.

For example, if you’re working on an Extreme Programming and your record/playback

tool states in its user manual that the requirements and the user interface should be

frozen prior to running the tool, you will probably have a lot of explaining to do. On an

XP team, you probably won’t have a frozen user interface or finalized requirements

until near the time you ship the software.

Conversely, if you are trying to use an Agile testing tool such as FIT (framework for

integrated tests) on a team that doesn’t have an architecture to support the tool, you’re

going to have to have some frank discussions with those people who expect the results

like the ones they heard from an Agile team at the last conference they went to.

Reporting Results

Once our tests are running, we spend time reviewing the results and deciding what to

do with the information. If the results from your automated tests differ from what

other team members or decision makers are expecting, brace yourself for strange

behavior. You may even feel like you yourself are being resisted, or not listened to.

Dealing with Resistance

 Don’t take it personally

 Use evidence, not emotions

 Don't make people feel stupid

if they have overly simplistic

or unrealistic ideas about test

automation

 Don’t blame decision makers

for making a poor decision

 Use evidence to choose the

right tool or approach – set

your emotions and biases

aside

 Don’t choose a tool or

approach until you have

evidence to support it is the

most suitable

 Don’t expect automation to

solve all your problems

 Don’t play politics and choose

a side – you will live with the

results of the decision, and

political environments

change quickly

 Set goals for automation, and

demonstrate how the tool and

approach is helping the team

meet those goals. (Note: test

automation itself is not a goal,

it is a means to help reach

goals)

 Don’t put process on a

pedestal, strive for

meaningful results

 If you use tools

unconventionally to create

automation value, be patient

and demonstrate how they

help the team reach goals

 Be patient, resistance fades

away in the face of evidence

and logic

Originally published in Automated Software Testing magazine, November 2009

Beware of Misplaced Faith

Sometimes, way down deep you know something is

wrong with your project, but you don’t want to face it.

When that’s the case, people don’t deal well with

evidence that tells them something is wrong. We put

faith in processes, tools and methodologies with as much

thoughtless abandon as any religious fanatic. When our

faith is challenged, we resist, at least at first.

Ignoring the Real Results

Our test results are ignored if they differ from prevailing

impressions about the project (testing reveals problems

when stakeholders expected perfection.) This seems to

be particularly common on performance or security

testing efforts.

Often, a manager has made claims about the

effectiveness of the software to customers or investors.

The alternative—that the product doesn’t work—is so

objectionable to think about, it’s preferable to hold onto

the delusion before dealing with the real problems.

Blaming the Messenger

The test automator becomes the target of hostility when

they are the bearer of bad news: “Sorry that you made

these wild claims without evidence, but our tests show

that the software can’t handle load.” At least you aren’t

ignored, but it is still hard to take, particularly if you are

the focus of an emotional outburst. Have courage, speak

truthfully and don’t take it personally. They will stop

resisting once they get used to the idea.

Conclusion

Resistance in test automation is common, but it isn't as

bad as it seems in the moment. In the short term, these

interpersonal difficulties can be confusing and hard to

take, but in the long-term the results of your test

automation efforts can far eclipse the pain of the

awkward exchanges.

With these experiences now behind me, I often look for

the absurd humor in the difficult situations I’ve been

through in the past. To be frank, I couldn’t possibly do

the testing I do now without test automation tools, and

thankfully, the odd emotional or political landmine is

now more mere annoyance, like ants at a picnic or

mosquitoes at a party. If you are faced with politics on

your automation project, stick to your principles, your

skills and logic. If you appeal to evidence over emotion

and ideals, you’ll come out ahead.

Jonathan Kohl

Jonathan Kohl is a testing consultant with Kohl Concepts Inc, based in Calgary, Alberta, Canada. He has been involved

with test automation projects for close to a decade. In addition to working with teams helping them solve technical and

business problems, Jonathan writes about and speaks on software-related topics. Read more of his work at

http://www.kohl.ca/Contact Jonathan @ jonathan@kohl.ca

http://www.kohl.ca/
jonathan@kohl.ca

