
Going Mobile: Testing

Beyond the Device
By Jonathan Kohl
Originally Published by The Testing Planet, March 2012

Have you noticed a shift in technology lately? If
you haven't, take a look around you next time
you go to a restaurant. You will probably see
people using their smart phones or tablets:
fingers tapping away, eyes staring at the screen,
an eerie blue lighting up their face. They are
focused, engrossed, addicted, and not to the
food, company and atmosphere in the
restaurant. They are interacting with (and
addicted to) applications on mobile devices that
are convenient to carry with us wherever we go.

Mobile devices are our contact points to
applications, services, the internet, and
increasingly, our social lives. For example,
consider that trip to a local restaurant and how
mobile technology has become enmeshed in
that experience. How many of the following
activities can you relate to?

 Searching for a restaurant nearby (using
location-based services or GPS.)

 Selecting a restaurant based on cuisine,
location or price.

 Reading user reviews and ratings to
help make a decision.

 Plotting out and following directions to
the restaurant on a map.

 After arriving, checking in to a social
networking application, alerting people
in your network of your current
location.

 Searching the web to answer questions
about the items on the menu. (I always
forget what aioli is.)

 Translating a meal that is in a foreign
language.

 Checking the nutritional information for
a meal.

 Once the food arrives, taking a picture
of it and uploading it to your social
networking profile.

 Friends commenting about the photo
and your meal.

 Throughout the meal, posting and
responding to comments about the
meal on your social networks.

 At the conclusion of a meal, posting
positive, neutral or negative comments
about the experience to restaurant
review applications.

 If the experience was poor, ranting on
public social media.

We haven’t even touched on the buzzing and
beeping that occurs while receiving emails, text
messages, and phone calls. Just imagine the
technology that is required to support all of
these activities. If you dissect it, the
infrastructure and underlying complexity is
amazing. The mobile device is just our primary
contact point to a large amount of technology
that supports our mobile-enhanced, social and
work activities. All those photos we upload and
share, all that data we have access to and send
to our social networks, all have to be stored
somewhere and quickly accessible not only to
us, but to those in our networks. This provides
new challenges from a testing perspective.

The people who are using these applications are
using them on the move. They interact with
them physically, in different environments with

http://www.thetestingplanet.com/2012/03/march-2012-issue-7/

different underlying infrastructures and in all
weather. As testers, we need to interact with
the application, find things that are difficult to
input into, and to see, and find problems that
are caused by being in interesting locations.
These are the problems your end users will
encounter the most, and will frustrate them the
most. (I have developed a framework to help
with testing these kinds of activities called I
SLICED UP FUN!.) However, merely testing the
front end of many mobile applications ignores
the support infrastructure underneath that
allows us to work with the devices the way we
do. We also need to analyze that and figure out
potential weak points that we can exploit when
testing. Two areas that have testing implications
in the mobile space are data and the cloud.

Most testers are familiar with data storage, and
software interactions with data-related
software and hardware. If you aren’t familiar
with “the cloud”, they are machines that are
available for use for different purposes for a
fee. You essentially rent time, space and
processing power from a company that provides
you with access to their machines over the
internet. It’s a relatively inexpensive way to add
processing power, distribute access and store
and distribute data. There are also GPU
(graphics processing unit) cloud centers that can
be used for graphics rendering, and movement
in areas like grid computing to help distribute
processing across a wide array of machines.

Data storage and hardware/software/network
interactions can have an impact on
performance. Using the cloud is a powerful tool,
but I’ve had the following challenges when
testing software on the cloud:

 You lose the complete control you have
over your own equipment.

 Other companies and projects are also
utilizing machines from that cloud
service, and their software can
potentially slow everyone else down if
they are doing something that taxes the
network capabilities of that particular
data center.

 Cloud services may not have the uptime
you are used to

 There are service outages, and bugs
that cause longer, unplanned outages.

 These issues can cause time and frustration
when trying to track down performance issues
or timing-related bugs.

Here’s an example: a team I was working with
had developed a mobile application on several
popular smart phone and tablet platforms. They
already had a web infrastructure in place for a
web-based application, but they exploited
mobile devices to help put media in people’s
hands. They were able to use features from
mobile devices to enhance this experience, and
provide connectivity and productivity for
remote workers who were often away from
desktops or laptops. The back end
infrastructure was a typical web application
using the LAMP stack (Linux OS, Apache web
server, MySQL database and PHP as the
programming language). This worked well for
web applications, but they weren’t sure how
the extra load of more and more people
connecting and downloading and uploading
media files would stress the system. I joined the
project team to help with performance and
functional testing.

We tried using load generation tools to simulate
the extra web traffic, but this didn’t address the
media downloading and interactions on mobile
devices. To simulate this effect, we used
functional test automation tools to load the
application in a web browser, sized to the same
size as the mobile screen, and simulated user
input by sending messages directly at the
protocol level. We then virtual servers and an
internal cloud infrastructure to generate load
across multiple machines. After jumping
through a few technical hurdles, we were able
to remotely execute tests on several machines
on different networks, with about eight
simulated mobile clients on each machine. This
effort revealed some astounding results. The
server behaved quite differently with the
mobile client than with the old web client, and

http://www.kohl.ca/articles/ISLICEDUPFUN.pdf
http://www.kohl.ca/articles/ISLICEDUPFUN.pdf

some of the simulated mobile clients suffered
from serious performance and functional
problems.

Once these issues had been sorted out , the
process was reversed . Now that we knew some
of the common trouble spots, and were able to
simulate those conditions on the server, while
testing with a small number of mobile devices
to see how the real thing handled server
performance problems.

After we felt confident that we had dealt with
most of the performance problems using both
approaches, we pushed out builds to our beta
testers and had them re-test the application in
the field. Some of them still reported serious
performance issues, and a pattern emerged: the
people who were the furthest away from our
data center had the worst performance.

Data Implication: Distributed

Data with the Cloud
We discovered that when using large media
files, people who were furthest away from the
data center experienced the poorest
performance. It turned out that the
combination of lower processing power on the
mobile devices compared to desktop
computers, coupled with the complexity and
differing speeds of data networks made
performance problems much more apparent.
Performance issues you barely noticed on a
desktop were unbearable on a mobile device.

We needed a quick fix, so we looked at what we
had done to design tests: we decided to use the
cloud. We were already using cloud services for
some of our media storage, so we expanded
those services to data centers that were closer
to the geographic areas where users
experienced poor performance. This data
distribution using different cloud centers
worked well. This was a bit of a shock for us, but
if you model the system from storage to

download and interaction, it begins to make
sense.

Data Implication: Reduce

Bottlenecks with noSQL
Social networking infrastructures, and systems
with high volume over a large geographic area,
have highlighted interesting data interaction
bottlenecks. If you look at a typical web
application such as a LAMP stack, you tend to
have a synchronous flow to and from the
database, and most of us use some sort of
Entity-Relationship Model and SQL to access the
data. (Even if the SQL is generated by an Object-
Relational Mapper.) When you have many reads
and writes with a large amount of data, with
different circles of people who require instant,
simultaneous access, you inevitably run into
bottleneck issues, which translate into poor
performance at the end user level. Man social
applications store an enormous amount of data,
with many users posting pictures, video, sound
files and other items in their systems. Add more
users with the ease of use that mobile devices
provide, and bottleneck and performance
problems become worse.

The noSQL is a movement that gained
popularity, in part to help deal with some of
these problems. Social networking systems have
different data usage and requirements than
other applications, so as programmers tried to
solve these problems by adding parallel
database interactions, different hardware and
software solutions, they inevitably began to
challenge the Entity-Relationship Data (ERD)
model itself. What many found is that the ERD
model we know and love does not always work
for social data with its various relationships, and
constant interaction. Without boring you with
technical details, noSQL is a different model to
save, access, update and read data than a
typical database. There are different
technologies used, many of them are also built
to scale rapidly and cope with the rapid growth

and massive data requirements that social and
similar systems depend on.
From a testing perspective, this means we have
to change the way we interact with data, and
challenge some of our assumptions about how
it is stored. noSQL systems may use something
that looks like a database, or they may store
data in different sorts of files. Querying may use
something altogether different than SQL. One of
my favorite SQL alternatives is XQuery’s FLWOR
(flower) expressions. We also have to look at
configuration and performance, with less
testing tool support than what we enjoy with
traditional, ERD systems.

Many noSQL tools are newly developed, but the
storage principles behind them are the same as
any other persistence model. You will need to
adjust how you think about storage, access and
learn different tools.

Bringing it All Together
In many cases, the application we interact with
on our mobile device represents the thin end of
the wedge, or the tip of the technology iceberg.
If we run our applications in ideal environments
under ideal conditions, and ignore the
infrastructure they depend on, we will miss
important bugs. The problems our end users
run into aren’t necessarily that easy to discover
if we are sitting in our test lab under ideal
conditions. What happens to the winter user
who tries to use your device with gloves on?
What problems might someone in a different
country encounter? What does our back end
infrastructure look like? Does it depend on new
technology? How might it perform and handle
data uploads and downloads seamlessly? What
complications do the size of and type of data
our users require our system to handle? How
might their physical location in relation to our
data center have an impact? As mobile testers,
we need to look at the entire system and come
up with creative ways to simulate real-world
conditions using different kinds of tools and
techniques to help discover the problems that

are important to our users. In this article, we’ve
looked at two specific areas: data and the cloud,
but there are more. When testing mobile
devices, research and look beyond the device to
get the full picture. Only testing from the
application-level may not be enough. Testing
mobile applications with the full picture in mind
will lead you to more of the important problems
that your users are likely to encounter.

Author Bio
Jonathan Kohl is an internationally recognized
consultant and technical leader. Based in
Calgary, Alberta, Canada he is the founder and
principal software consultant of Kohl Concepts,
Inc. Jonathan helps companies define and
implement their ideas into products, coaches
practitioners as they develop software on
teams, and works with leaders helping them
define and implement their strategic vision. He
is also a popular author and speaker. As a
thought leader in mobile application testing,
exploratory testing, developing policy and
strategy, and helping teams adjust to
methodology changes, Jonathan doesn't just
write and talk about developing software, he
actively helps teams deliver the best products
they can.

[1] -
http://www.kohl.ca/articles/ISLICEDUPFUN.pdf

[2] - http://radar.oreilly.com/2012/02/nosql-
non-relational-database.html

[3] - http://www.strozzi.it/cgi-
bin/CSA/tw7/I/en_US/nosql/Home%20Page

[4] -
http://www.w3schools.com/xquery/xquery_flw
or.asp

http://www.kohl.ca/articles/ISLICEDUPFUN.pdf
http://radar.oreilly.com/2012/02/nosql-non-relational-database.html
http://radar.oreilly.com/2012/02/nosql-non-relational-database.html
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page
http://www.w3schools.com/xquery/xquery_flwor.asp
http://www.w3schools.com/xquery/xquery_flwor.asp

