
 1
Copyright ©2010 -

Test Mobile Applications with

I SLICED UP FUN!
BY JONATHAN KOHL

A MNEMONIC FOR MOBILE APP TESTING

Test idea generation is the cornerstone of effective

software testing. It’s hard to think of different

approaches when testing software, so an easy way to

get started is to use a mnemonic to help guide your

thinking. I call it: I SLICED UP FUN!†

This is a mnemonic I adapted from James Bach’s

SFDPOT (San Francisco Depot)1, a testing mnemonic

that explores product elements. Each letter in the

mnemonic represents a different approach to testing

mobile apps. I have found each of these areas to be

effective at revealing problems with applications I am

testing. Try using the app on your test device,

focusing on each of these areas, one at a time. Spend

time in each category to think of and execute

different test ideas.

Here is I SLICED UP FUN! expanded:

I: INPUTS INTO THE DEVICE

These represent the ways you can interact and

control the device. Including:

 Built-in keyboard/keypad
 Touch screen gestures and typing
 Synching with other devices
 Peripherals that you can plug in to the device
 Hold the device differently when inputting–

be creative!

Test the application and try out all the inputs that you

can think of. If it is a touch device, make sure you try

different combinations with your fingers. Keep a

thumb on the edge of the screen and try to type, or

tap your fingers on the device while using it. If it

rotates to portrait and landscape modes, make sure

you try in different modes. See if the application

behaves strangely when you rotate it and try to

manipulate with touch gestures or typing on a

keyboard.

Even the way devices are held can impact their

connectivity and how well they respond to

application inputs. Can you hold the device in such a

way and interact with it so that it causes the app you

are testing to crash or freeze up? What happens if you

launch the application in each supported orientation

of the device? (Sideways, upside down, straight up,

etc.)

S: STORE

Mobile apps tend to get distributed online through

special stores. The most well known are Apple’s App

Store and the Android Market. For test ideas, try to

find out information about the requirements of

application requirements for store submissions.

Sometimes finding out what store(s) the app will be

submitted to and looking at any public

documentation available that outlines guidelines can

be a treasure trove of testing ideas.

See if you can find anything that might have been

missed by looking for:

 Submission specifications
 Development guide

 2
Copyright ©2010 -

 User guide for error handling, location
services, permissions for user privacy items,
accessibility, etc.

L: LOCATION

Where you are located can have an impact on what

you are testing, particularly if the application

requires an internet connection. Applications may be

affected by the following:

 Geo-location errors
 Movement, stopping suddenly
 Connection issues due to interference
 Moving from one data network to another

(eg. wifi to wifi, wifi to wireless broadband,
wireless broadband to wifi, others)

Getting up and carrying your device while testing an

app is an effective way to find bugs. Just get up, walk

out of range of the wifi device you are connected to,

and see what happens to the application when you

move from one network to another wifi or other

network. Can it handle your devices native messages

when you change or lose connections? Does it crash

or freeze if it loses or changes connections?

Also, your location is often different from where the

application is developed. You may speak a different

language than the programmers. Is the application

compatible with the language and culture where you

are located? Are words correctly translated? Are

meanings correct and clear? Does the application do

something that could be interpreted as funny or

offensive? If so, the development team needs to know

those issues.

I: INTERACTIONS/INTERRUPTIONS2

Mobile applications have far more hardware

restrictions when they operate than other computers.

They have less memory and less processing power

than a PC, for example. As a result, they are

susceptible to problems when other applications or

operating system functions are running. It’s

important to test how the app behaves when other

applications running at the same time. Furthermore,

any changes made to the device’s preferences can

have an effect on your app. See how interaction with

other programs, particularly built-in, native

applications and the application you are testing

interact. On mobile devices, they can cause your app

to fail. You have to be very conscious of your

memory footprint and how you shut down and clean

up.

Are there problems when:

 Running multiple applications, utilizing
multitasking

 Using other applications, then using the
application you are testing(email, calendar,
texting, note taking, others)

 Notifications appear (new emails, phone calls,
text messages, other notifications)

 Error messages occur (losing connections,

notifications, operating system and other

errors)

Be creative with your device settings. Find out all the

ways you can change the settings on your phone, and

determine which might have an effect on the

application. Spending a couple of hours using the

application while changing different settings is

worthwhile. Also spend time exploring ways you can

force error messages.

Another interesting interaction is with any time-

based notification, such as calendars, alarms, and

built-in clocks. Applications can behave strangely

when they become confused about time, or if they are

interrupted by a time-related alert. Even using

applications in a certain order, or doing things on

certain days (time changes for example) can cause

interruptions or interactions that the application may

have problems dealing with.

C: COMMUNICATION

Smartphones started out primarily as communication

devices, but the app we are testing may not handle

communication interaction smoothly. Here are some

communication examples:

 Phone
 Texting

 3
Copyright ©2010 -

 Emails
 Instant messaging
 Voicemail messages
 Video
 Others

It is interesting to test how an app interacts with

communication: texting, emails, telephone, voicemail.

There are a lot of combinations to test here: taking

calls/texts, rejecting calls/texts, interacting with

voicemail. Each of these communication devices take

precedence over the app you are testing, so how does

it handle these interruptions? There are a lot of

scenarios you can try. In some cases, you might be

able to use a communication device while using the

app you are currently testing.

E: ERGONOMICS

If you test mobile apps for any length of time, you will

show signs of physical stress. You need to manage

this as a tester, by taking breaks and managing your

time and physical interaction. However, also think of

the end users. They run into the same problems that

can make you tired:

 Small screens can be hard on the eyes
 A small device means there is no ergonomic

help from a desk, or chair – you often hunch
over to interact with it

 It’s not uncommon to get a sore back, fingers,
eyes when using a device for any length of
time

 Use physical strain as points of investigation
for usability problems

Use physical cues from your own testing work and

analyze whether the application makes interaction

worse. Are fonts and colors and sizes too small? Are

there too many steps to click through to get through

complicated workflows? Does the end user have to

type a lot on the small device? Any shortcuts to

decrease physical strain, or improvements to display

are huge factors with how successful an app is.

Highlight and report problem areas that make you

struggle – users will have the same kinds of problems

if they use the app for any length of time.

D: DATA

The “D” in SFDPOT stands for data, in other words,

anything the application processes. Anything you can

input into the application is processed in some way.

Furthermore, any data that is coming from a server

or third party can have an effect on the application.

Check for:

 Types of input – special characters, different
languages, etc

 Media – see if the app depends on an outside
source to play music, videos or anything else.

 Size of files – if the application uses outside
files, try using different file types

 Frequency of updates – some applications

require data from a server that is updated

periodically to change settings, or to provide

new content. Find out the schedule of these

updates and see how the application reacts

when an update occurs.

U: USABILITY

These can be some of the most important bugs to find

and log, because they are the issues that often

frustrate end users the most. When you are testing

the application, note and log any issues that make

you uncomfortable, frustrated, angry, or upset. To

find usability issues, look for any actions that are

awkward, confusing, or slow. Listen to your emotions

– that’s an important source of usability issues.

Instructions can be incomplete or misleading, items

can be labeled incorrectly, and there may be

workflows that make doing what you want to do

difficult. If there are aspects of the application that

you don’t like and frustrate you, log them as usability

issues. Sometimes installation, setup or upgrading an

app can have complicated steps. Are there any

strange configuration interactions with your phone's

settings or hardware? Some device updates require

switching power off, removing batteries, and other

things that may be difficult for non-technical users to

do. Highlight anything cumbersome, frustrating or

confusing for the development team.

 4
Copyright ©2010 -

P: PLATFORM

Borrowing the “P” from Bach’s SFDPOT mnemonic,

looking at the device that the application needs to run

on is important. You may have a device that the

programmers do not have access to, and their app

may not work at all, or may work poorly. Your unique

device is something that they are depending on you

to test the application, so careful observation and

documentation of problems, large or small is

important. Also be aware of changes to your device.

You have little control over operating system

updates. The provider encourages you to update

these, for good reasons. However, new versions can

cause an app to fail that worked in a prior version. Be

aware that updates (even small ones) can cause an

application to stop working. Be sure to find out all the

technical information about what device you are

using, and what operating system version you have

installed when logging a bug.

F: FUNCTION

Functional testing (the “F” in SFDPOT) is the most

common form of testing. It usually involves

comparing the specification or requirements for an

app, and verifying that the application does what it

says it does. This can often be very simplistic: looking

for items and ensuring they are there and function

the way they are supposed to. To be more creative,

generate test ideas by asking these questions:

 Can you identify everything that the
application does?

 Have you worked through all the aspects of
the app? Clicked every button? Filled in every
form? Have looked into default settings and
options that are available to you?.

 Try a tour of the product to identify

everything it does3. Try to find commonly
used features, and the most obscure. Be
thorough.

 Once you have a good sense of what the
product is supposed to do, does it match what
the app developers say it does? If it doesn’t,
there is a source of problems. If your
impression differs from theirs, they need to
know that.

U: USER SCENARIOS4

This is an incredibly powerful method of finding

problems. In fact, if I am limited to one type of testing

approach in a short period of time, this is often the

one I will choose. (Check out Cem Kaner’s paper on

scenario testing in the references to help get started.)

This is a fun way to use the application: imagine two

or three real users that you know, and think what

they would do when using the application. Try to

think of creative users: I always imagine that one

annoying family member who struggles with

technology and always wants me to fix their

computer or mobile phone. If I pretend to be that

person, what kinds of problems would they find?

What would they struggle with? I also imagine a more

technical user, and someone in between. I try to think

of real people and how they would react to using the

software. To create scenarios, I identify the following

 How is this application supposed to be used?
 What problems does it solve for users?
 What are the goals of end users that this

application helps them solve?

I then create scenarios based on that information. For

example, if I think of a busy office worker, I set up a

scenario with my phone so that it has a lot of emails,

texts and meeting reminders occurring while I use

the app. You can get very creative here, with a lot of

other application interaction, as well as trying to

quickly solve a problem or enjoy an experience with a

device under different conditions.

N: NETWORK

Mobile apps that require network connectivity such

as an internet connection are quite susceptible to

problems. Since they aren’t stationary objects like a

PC, they have a huge dependence on the availability,

performance and reliability of networks. The path

from a server to your device can be confusing,

complex and circuitous. What this means is that the

application may expect connectivity that isn’t

available consistently where you are testing. In these

cases, the application may fail or crash because of

timing issues (it takes too long to get responses) poor

 5
Copyright ©2010 -

connections (lack of signal strength) or moving from

one network to another.

 Wifi
 Wireless broadband
 Dead spots
 Moving from one data network to another

(eg. wifi to wifi, wifi to wireless broadband,
wireless broadband to wifi, others)

The network controlled by a service provider and

how well it performs is not something we can control.

We can find out whether apps work well with the

network we are using or not, and let the developers

know about the problems you see.

GETTING STARTED

I usually start with “FUN” – I look at the functions of

the app, starting with the installation and moving

from there. I follow any instructions (or lack of) it

comes with, and spend time touring the application. I

then look at all the settings options of my mobile test

device and determine what might interfere with the

application. It can take over an hour to delve deeply

into the built-in capabilities of the device itself. I then

try to think of three different users, and imagine how

they would use the application. I map out basic

scenarios, and try to move my way through the

application the way real users would. As I move

through the app, I am careful to note anything that

bothers me, and feels unresponsive or awkward.

These are usability issues that are important

feedback. Then, I investigate my network options,

and I try the app out using different connection

options. From there, I move on to the rest of the

mnemonic: interactions, interruptions, and others.

You might be surprised how many bugs you find if

you work at trying out as many ideas in each category

as you can. Don’t be limited by this though, come up

with your own ideas, use this mnemonic as a

springboard for your testing thinking.

Note: The ideas represented by I SLICED UP FUN! are

there to help get you started, but they are by no

means exhaustive. I recommend using other models

to help generate test ideas, particularly in the

areas of performance and security, which I don’t

touch on here. If you think of other ideas, be sure to

try them out, and use this concept in conjunction with

other areas you want to focus on in your testing

project.

This article was first published by Kohl Concepts

Inc., October, 2010.

† Thanks to Jared Quinert for helping create the I

SLICED UP FUN! mnemonic.

REFERENCES

1 Bach, James. (2006) Heuristic Test Strategy Model

http://www.satisfice.com/tools/satisfice-tsm-4p.pdf p. 4

2 Testlabs Blog. (2010) Top 10 Tips For Testing iPhone
Applications
http://blog.testlabs.com/search/label/iPhone accessed

September, 2010.

3 Kelly, Michael (2005) Touring Heuristic
http://www.testingreflections.com/node/view/2823

4Kaner, Cem. (2003) An Introduction to Scenario Testing
http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf

http://www.software-testing.com.au/blog
http://www.satisfice.com/tools/satisfice-tsm-4p.pdf
http://blog.testlabs.com/search/label/iPhone
http://www.testingreflections.com/node/view/2823
http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf

