
Jonathan Kohl, Kohl Concepts Inc. © 2007 1

Exploratory Testing: Finding the
Music of Software Investigation
My friend Steve is an exceptional

classical guitarist. Watching him

perform is inspiring – he has a rare

mastery over the instrument and has

spent years developing his craft. Steve

can also explain the techniques he is

using while he is playing, to teach and

demonstrate how a student can learn

and improve their own skills. Steve can

make a guitar sing, and says that music

is about tension and resolution. If music

is all tension, you get uncomfortable as a

listener. If it only resolves, it is boring,

tedious repetition. Steve extends this

concept to the actual physical actions

that a guitarist employs to create certain

sounds. For example, if you play with a

lot of tension, you will limit your ability

to do certain tasks. To make music, you

need to find a balance between tension

and resolution, and to find this balance,

you need a mix of knowledge, skill and

creativity.

Like Steve, my friend James Bach is also

exceptionally skilled. James isn’t a

guitarist, he is a software tester. James is

also inspiring to watch while he

practices his craft. He is a master of

skilled exploratory testing:

simultaneous test design, execution and

learning1. James can also explain the

testing techniques he uses while he is

testing, to instruct testing students. The

first time I saw him test software, I was

reminded of my friend Steve. This time

the tension and resolution wasn’t

related to music composition or the

execution of techniques on a musical

instrument. Instead, the tension and

resolution revolved around ideas. James

would simultaneously design and

execute tests based on his curiosity

about the application. He would get

feedback on a test, learn from it and

design a new test. The tension was

generated by the questioning nature of

his tests, and the resolution

emerged from the results

of those tests. There was

something almost

musical in this interplay

between the mind of the

tester and the

application being

tested. This shouldn’t

be surprising; as a

software tester,

James has a well-

developed mix of

knowledge, skill

and creativity.

As a software

testing

consultant and

musician, I

meet a lot of

Exploratory Testing: Finding the Music of Software Investigation

2

skilled testers who do amazing work.

Through experience and a lot of trial

and error, they have developed skills

they can’t easily explain. Unfortunately,

with software testing, there aren’t as

many obvious avenues for skill

development as there are for musicians.

Many software testers don’t realize that

there are learnable exploratory testing

skills they can develop to help them

become even more valuable to software

development teams.

When I work in a new organization, it

doesn’t take long for me to get

introduced to the testers who are highly

valued. Often, when I ask testers about

the times they did their best work, they

apologize for breaking the rules: “I

didn’t follow any pre-scripted test cases,

and I didn’t really follow the regular

testing process.” As they describe how

they came through for the team on a

crucial bug discover, they outline

activities that I identify with skilled

exploratory testing. Little do they know

that this is often precisely why they are

so effective as testers. They have

developed analysis and investigative

skills that give them the confidence to

use the most powerful testing tool we

have at our disposal: the human mind.

Exploratory testing is something that

testers naturally engage in, but because

it is the opposite of scripted testing, it is

misunderstood and sometimes

discouraged. In an industry that

encourages pre-scripted testing

processes, many testers aren’t aware

that there are other ways of testing other

than writing and following test scripts.

Both software testing and music can be

interpreted and performed in a variety

of ways.

Western classical music is often highly

scripted in the form of sheet music.

Compositions are written in a language

that performers can interpret with their

voices or instruments. Despite a detailed

well-disseminated shared “language”

for printed music, it is difficult to

perform music exactly the way the

composer intended, particularly with

musical pieces that have been around

for centuries, because we don’t have the

composer around anymore to consult.

The opposite of playing from sheet

music is improvisation, creating

unrehearsed, unscripted music. A

continuum exists between these two

styles, because a composition is open to

at least some interpretation by the

performer, and some performers

embellish more than others. Software

that plays music is very precise in

repeating what is input from sheet

music, but is rarely as pleasant to listen

to as a real performer. Music can be

boring and tedious when played by a

computer program, and full of life when

played by a musician. At the other end

of the spectrum, successful

improvisation requires skill, and top

performers study to develop a large

breadth and depth of musical theory

and technical proficiency on their

instruments in order to successfully and

creatively improvise.

In testing, test scripts that are written

down are also open to interpretation by

Jonathan Kohl, Kohl Concepts Inc. © 2007

3

the test executor. Automating these tests

is the only way to guarantee that they

will be repeated exactly the same way,

but like automating music, the lack of

interpretation in execution can limit the

results. A computer can only find the

problems we predict and program it to

find. Repeating scripted tests over and

over can get boring, tedious, and may

only feel like idea resolution, without

the vital tension created by curiosity. At

the other end of the spectrum, there is

improvisational testing: exploratory

testing. Pure exploratory testing means

that my next test is completely shaped

by my current ideas, without any

preconceptions. Pure scripted testing

and pure exploratory testing are on

opposite ends of a continuum.

This analogy of music and software

testing isn’t perfect however. Music is

performed for entertainment purposes

or as practice for musicians who are

developing their skills. The end goal is

entertainment for listeners, skill

development, and the enjoyment of the

musician. Software testing on the other

hand isn’t generally done for

entertainment, instead it is used to

discover information. As Cem Kaner

says, software testing is an investigative

activity to provide quality-related

information about software2. To gather

different kinds of information, we want

to be open to different interpretations,

and to be able to look at a problem in

many different ways. In music,

improvisation can have negative effects

when used at an inappropriate time or

in an inappropriate manner. (When a

musician

plays a wrong

note, we really notice it.) In software

testing, exploring and improvisation,

even when done wrong, can often lead

to wonderful sources of new

information. Inappropriate

interpretations can be a hazard in

musical performances, but on software

projects, accidents, or “playing the

wrong notes”, can lead to important

discoveries. Furthermore, software

projects are faced with risk, and

exploratory testing allows for us to

instantaneously adjust to new risks.

What does skilled exploratory testing

look like? Here is scripted testing and

exploratory testing in action. In one test

effort, I came across a manual test script

and its automated counterpart which

had been written several releases ago.

They were for an application I was

unfamiliar with, using technology I was

barely acquainted with. I had never run

these tests before, so I ran the automated

test first to try to learn more about what

was being tested. It passed, but the test

execution and results logging didn’t

provide much information other than

“test passed.” To me, this is the

equivalent of the emails I get that say:

“Congratulations! You may already be a

Exploratory Testing: Finding the Music of Software Investigation

4

winner!” Statements like that on their

own, without some sort of corroboration

mean very little.

I didn’t learn much from my initial

effort: running the automated test didn’t

reveal more information about the

application or the technology. Since

learning is an important part of testing

work, I delved more deeply. I moved on

to the manual test script, and followed

each step. When I got to the end, I

checked for the expected results, and

sure enough, the actual result I observed

matched what was predicted in the

script. Time to pass the test and move

on, right? I still didn’t understand

exactly what was going on with the test

and I couldn’t take responsibility for

those test results completely on blind

faith. That violates my purpose as a

tester; if I believed everything worked

as advertised, why test at all?

Furthermore, experience has taught me

that tests can be wrong, particularly as

they get out of date. Re-running the

scripted tests provided no new

information, so it was time leave the

scripted tests behind.

One potential landmine in providing

quality-related software information is

tunnel vision. Scripted tests have a side

effect of creating blinders - narrowing

your observation space. To widen my

observation possibilities, I began to

transition from scripted testing to

exploratory testing. I began creating

new tests by adding variability to the

existing manual test, and I was able to

get a better idea of what worked and

what caused failures. I didn’t want to

write these tests down because I wanted

to adjust them on the fly so I could

quickly learn more. Writing them down

would interrupt the flow of discovery,

and I wasn’t sure what tests I wanted to

repeat later.

I ran another test, and without the

scripted tests to limit my observation,

noticed something that raised my

suspicions: the application became

sluggish. Knowing that letting time pass

in a system can cause some problems to

intensify, I decided to try a different

kind of test. I would follow the last part

of the manual test script, wait a few

minutes, and then thoroughly inspect

the system. I ran this new test, and the

system felt even more sluggish than

before. The application messaging

showed me the system was working

properly, but the sluggish behaviour

was a symptom of a larger problem not

exposed by the original tests I had

performed.

Investigating behind the user interface, I

found that the application was silently

failing; while it was recording database

transactions as completing successfully,

it was actually deleting the data. We had

actually been losing data ever since I ran

the first tests. Even though the tests

appeared to pass, the application was

failing in a serious manner. If I had

relied only on the scripted manual and

automated tests, this would have gone

undetected, resulting in a catastrophic

failure in production. Furthermore, if I

had taken the time to write down the

Jonathan Kohl, Kohl Concepts Inc. © 2007

5

tests first, and then execute them, I

would most likely have missed this

window of opportunity that allowed me

to find the source of the problem.

Merely running the scripted tests only

felt like repeating an idea resolution,

and didn’t lead to any interesting

discoveries. On the other hand, the

interplay between the tension and

resolution of exploratory testing ideas

quickly led to a very important

discovery. Due to results like this, I

don’t tend to use many procedural, pre-

scripted manual test cases in my own

personal work.

So how did I find a problem that was

waiting like a time-bomb for a customer

to stumble upon? I treated the test

scripts for what they were: imperfect

sources of information that could

severely limit my abilities to observe

useful information about the

application. Before, during and after test

execution, I designed and re-designed

tests based on my observations. I also

had a bad feeling when I ran the test.

I’ve learned to investigate those

unsettled feelings rather than suppress

them because feelings of tension don’t

fit into a script or process; often, this

rapid investigation leads to important

discoveries. I didn’t let the scripts

dictate to me what to test, or what

success meant. I had confidence that

skilled exploratory testing would

confirm or deny the answers supplied

by the scripted tests.

Testers who have learned to use their

creativity and intelligence when testing

come up with ways to manage their

testing thought processes. Skilled

exploratory testers use mental tricks to

help keep their thinking sharp and

consistent. Two tricks testers use to kick

start their brains are heuristics

(problem-solving approaches) and

mnemonics (memory aids)3.

Musicians use similar techniques, and

may recognize “the circle of fifths” as a

heuristic to follow if they get lost in an

improvised performance. (This isn’t a

guarantee though, a heuristic may or

may not work for you. When a heuristic

is inappropriate, you simply try

another.) Musicians tend to have large

toolboxes of heuristics, and also use

mnemonics as well. One example is

“Every Good Boy Does Fine” which is

used to remember the notes “EGBDF”

on the lines of a staff. Skilled testers use

similar tools to remember testing ideas

and techniques.

I’m sometimes called in as an outside

tester to test an application that is

nearing completion. If the software

product is new, a technique I might use

is the “First Time User” heuristic. With

very little application information, and

using only the information available to

the first time user, I begin testing. It’s

important for me to know as little as

possible about the application at this

time, because once I know too much, I

can’t really test the way a first-time user

would.

To start testing in these situations, I

often use a mnemonic I developed

called “MUTII”. (A composer named

Exploratory Testing: Finding the Music of Software Investigation

6

Nicolo Mutii helps me remember it.)

This mnemonic helps me maintain

consistency in the way I think about

testing. Expanding the mnemonic:

Market—The targeted constituency of

users this software is intended for. For

example, “the finance department”, or

“medium sized accounting firms”.

Users—The actual users who will use the

software. Who are the users? What do

they do? What are their motivations for

using our software?

Tasks—What are the tasks that the users

will use this software for? What are

some typical tasks in their work?

Information—What does the product tell

me about the tasks it automates, and

how I can perform them?

Implementation—Is the software easy to

use as a first time user? Is it reliable?

Can I easily implement the tasks given

the information and design of the

product?

Before I start testing the application, I

gather information about the market

and the users from the business. This

helps frame the kinds of tests I will

develop when I use the software for the

first time. If I’m not familiar with the

market and users, I will also ask for

typical tasks engaged in by the users.

When I start testing, I open my

notebook to take notes of my

observations and thoughts, and any

bugs I find. (See Figure 1.) I begin

designing a test in my mind, execute it

with the software, and observe the

results. I keep repeating this process,

changing tests, and referring back to my

MUTII mnemonic. Not only does each

letter of the mnemonic help me frame

Figure 1: Excerpt from exploratory testing session notes

Jonathan Kohl, Kohl Concepts Inc. © 2007

7

my testing, but the acronym helps me

quickly design and execute many tests

under each section as I go. I may also

use other heuristics and mnemonics as I

test, if I find areas to explore differently

or more deeply.

As I work through the application, I

may find mismatches between the

application and the market it is intended

for, and the information supplied to

users. If I have trouble figuring out the

software’s purpose and how to use it, so

will end users. This is important

usability information that I write down

in my notes. If the software isn’t usable,

it isn’t going to sell. I invariably find

bugs in this first testing session. I

explore them, take notes so I can report

them later, and design new tests around

those bugs. After the session is over, I

will have bugs to report and usability

questions to ask. I will now have a

model developed in my mind for testing

this software. My brain will work on

this model constantly, even when I’m

not testing, and other testing activities

will help build this and other models of

the software.

Using heuristics and mnemonics helps

me be consistent when testing, but I

don’t let them rule my testing actions. If

I observe something suspicious, I

explore it. If something feels wrong, I

investigate, and confirm or deny that

feeling with defensible facts. It’s

common to switch from heuristics and

mnemonics to pure free-form

improvisation and back again, or to

improvise around highly structured

tests. Exploratory testing—like

improvising—helps me adapt my

thinking and my actions based on what

the software is telling me. This is a

powerful concept. You can seize upon

opportunities as soon as you observe

them. Furthermore, you can adapt

quickly to project risks, and discover

and explore new ones. By developing

skills to manage your thinking about

testing, you no longer have to wait for

spontaneous discoveries to appear out

of thin air, and not be able to explain

why you found a particular problem, or

repeat it.

Developing exploratory testing skill

puts you in charge of your testing

approach. Skilled software testing, like

skilled musicianship, is often referred

to as “magic”, simply because it is

misunderstood. Music follows a set of

patterns, heuristics and techniques. If

you know a handful, you can make

music quite readily. Getting there by

trial and error takes a lot longer, and

you’ll have a hard time explaining how

you got there once you arrive. Testing

using pure observation and trial and

error can be effective, but can be

effective much more quickly if there is a

system to frame it.

Skilled exploratory testing can be a

powerful way of thinking about testing.

However, it is often misunderstood,

feared and discouraged. When we

dictate that all tests must be scripted, we

discourage the wonderful tension and

resolution in testing, driven by a curious

thinker. We limit the possibilities of our

Exploratory Testing: Finding the Music of Software Investigation

8

software testing leading to new,

important discoveries. We also hamper

our ability to identify and adapt to

emerging project risks. In environments

that are dominated by technology, it

shouldn’t be surprising that we

constantly look to tools and processes

for solutions. But tools and processes on

their own are stupid things. They still

require human intelligence behind

them. In the right hands, software tools

and processes, much like musical

instruments, enable us to realize the

results we seek. There are many ways to

perform music, and there are many

ways to test software. Skilled

exploratory testing is another effective

thinking tool to add to the testing

repertoire.

Jonathan Kohl is a software testing consultant with Kohl Concepts Inc., based in

Calgary, Alberta, Canada. Jonathan writes about and speaks on software testing. Read

more of his work at www.kohl.ca. Contact Jonathan at jonathan@kohl.ca.

1 Bach, James. (2003) Exploratory Testing Explained http://www.satisfice.com/articles/et-article.pdf

2
 Kaner, Cem. (2004). The Ongoing Revolution in Software Testing. Presented at Software Test & Performance
Conference, December, 2004, Baltimore, MD
http://www.kaner.com/pdfs/TheOngoingRevolution.pdf

3
 Bach, James. (1999, November) Heuristic Risk-Based Testing. Software Testing and Quality Engineering Magazine
http://www.satisfice.com/articles/hrbt.pdf

http://www.kohl.ca/
mailto:jonathan@kohl.ca
http://www.satisfice.com/articles/et-article.pdf
http://www.kaner.com/pdfs/TheOngoingRevolution.pdf
http://www.satisfice.com/articles/hrbt.pdf

