Technically Speaking

Is “Agile” Distracting You?

by Jonathan Kohl

The term “agile” has become popular,
and profitable. Early adopters of “agile”
became in demand. Other groups jumped
on the bandwagon, learning techniques
such as Extreme Programming or Scrum,
and adopting tools such as continuous
integration, test-driven development,
and refactoring. Still others wanted to
mimic the success but didn’t want to
change the product, process, tool, or
service they were offering. Instead, they
discovered that a little “agile” white-
washing goes a long way. It’s easy to
prefix whatever tool, process, or service
you’re selling with the term “agile.” The
consumer is distracted from the real of-
fering; it contains the right buzzword, it
must be good. Consumers buy both the
buzzword and the product or service.

The term “agile” has become abused
and, since we don’t have a standard dic-
tionary definition, it is open to interpre-
tation. (Agilists will tell you that being
“Agile” is not the same as being “agile”
in the dictionary sense.) That isn’t to say
that the Agile Manifesto that brought us
the term “agile software development”
was a bad thing. It wasn’t. It was a won-
derful reminder to return to a human-
centered approach (we value people
over process) and a product-centered ap-
proach (we believe in working software)
that many had lost along the way. Just
because something contains the word
“agile” does not mean that the practitio-
ners are not sincere, skilled, and working
hard to create value for their customers
and their teams. However, even when
we have the best intentions, an ideal can
distract us from our real goals.

“Agile” can distract from your mes-
sage. | once started writing a book on
agile testing and got stuck early on.
My wife told me to look at Strunk and
White’s The Elements of Style, spe-
cifically the chapter on “Omit needless
words.” I realized my wife meant “agile”
was a needless word. If I removed the
agile prefix, I was left with content that
was strong enough to stand on its own. It

was also much easier just
to write about explor-
atory testing or test plan-
ning without having to fit
the ideas into an “agile”
slant. I was really talkin,

g . . .
about applying testing A0iIE PIOCESS implementations

ideas on agile projects,

or being an agile-fluent proguce software that

tester. Many of the test

ideas we’ve developed CUSTOMErs aren’t
over the years plug right
in to agile environments,
or any other iterative, in-
cremental lifecycle with
just a bit of adaptation.
realization, but my writing (and particu-
larly my thinking) profited from it. Now
I just focus on testing in any context,
and I pride myself on being able to test
in all sorts of process environments, and

interested in.

It was a hard

my work is more meaningful.

Agile can be a distraction from your
mission to deliver software that your
customers value, while supporting your
team. I’ve seen far too many successful
agile process implementations produce
software that customers aren’t inter-
ested in. I’'ve also witnessed agile bul-
lies deliver working software but grind
up teams through their zealotry, bigotry,
and elitism.

Agile can distract from your skill
development. We can talk about agile
ideals, but someone needs to code, test,
document, market, and sell the software.
One of my friends mentioned that for
the past few years he was so worried
about following agile practices that his
programming skills suffered. He said he
learned more in several months spending
his time reviewing and practicing the
programming techniques in Structure
and Interpretation of Computer Pro-
grams [1] than he had in several years of
trying to follow agile practices.

Take a moment to ask yourself these
questions: To what extent are agile prac-
tices helping you create value in your
product and within your team? To what

www.StickyMinds.com

‘ ‘ I've seen far too

many successful

extent are they distracting
you away from reaching
your goals?

I’'m not against using
the term “agile.” How-
ever, since it has come
the
speaker wants it to, it has
lost significance. Rather,
tell us your project stories.
Let’s talk about what’s re-
ally going on—what prac-

to mean whatever

tices you are using, how
they work for you, what
you have tried, and what
you have learned—agile
or not. Tell us what your team learned
when implementing the twelve practices
of Extreme Programming, or how you
successfully blended Scrum with existing
practices on your project. I’d also like
to hear about practices that don’t get a
lot of air time in agile circles: What are
Cleanroom or RAD teams doing? How
are they delivering successful software?
What lessons can we learn from suc-
cessful “waterfall” projects? What about
that process that has no name but is
working wonders with your team?

The Agile Manifesto was a welcome
development in an industry that seemed
mired in paperwork and process. Unfor-
tunately, “agile” can be carried too far.
I propose our rallying cry be not Agile,
but Value—both to our customers and
our teams. If we are delivering what our
customers need, and we are building up
our teams and those we interact with,
does it matter what it is called? Let’s stop
worrying about whether what we do is
“agile” or not, and go back to calling
it software development. Let’s worry
about how we can do that to the best of
our ability. {end}

REFERENCES:

1] Abelson, Harold and Sussman, Gerald Jay.
Structure and Interpretation of Computer
Programs. The MIT Press, 1996.

SEPTEMBER 2008 BETTER SOFTWARE 15

